INSTITUTE OF ADVANCED STUDIES IN EDUCATION (DEEMED TO BE UNIVERSITY)

> GANDHI VIDYA MANDIR, SARDARSHAHAR (CHURU) RAJASTHAN – 331403 Phone – 01564 – 220025, 223642, 223054 Web: www.iaseuniversity.org.in

MANUAL: SYLLABUS FOR MASTER OF SCIENCE IN PHYSICS

FACULTY OF SCIENCES CHOICE BASED CREDIT SYSTEM (CBCS) Session 2022-2024

INDEX

Sr. No.	Content	Page No.	Remarks
1.	About the Department	3-3	
2.	About the Programme	3-3	
3.	Programme Outcomes (POs)	3-4	
4.	Programme Specific Outcomes (PSOs)	4-4	
5.	Admission, Attendance	4-5	
6.	Guidelines for Choice Based Credit System (CBCS)	5-8	
7.	Definition clauses	5-7	
8.	Grade and Marking scheme	7-9	
9.	Skill Courses/Sustainable development course (Non-credit)	9-9	
10.	Instructions for distribution of periods	9-9	
11.	Medium of Instruction & Medium of Examination	9-9	
12.	Marking Scheme of Examination (ESE and SEE)	10-11	
13.	Declaration of Result	11-12	
14.	Grievance Redressal Mechanism	12-12	
15.	Course Structure and Distribution of Credits	13-15	
16.	List of Elective Courses	15-16	
17.	Semester I	17-27	
18.	Semester II	28-37	
19.	Semester III	38-52	
20.	Semester IV	53-68	

DEPARTMENT OF PHYSICS

About the Department:

To create an academically sound environment that nurtures, motivates and inspires excellence in research and teaching in Physics for the growth of science and technology along with concern for society. Research in the Department is being pursued in many of the major contemporary areas of experimental and theoretical physics such as Nuclear Physics, High Energy Physics, Atomic and Molecular Physics, Condensed Matter Physics, Astrophysics, Photonics and Non Linear Dynamics.

About the Programme:

The Department offers M.Sc. Physics programme which caters to the needs of application oriented world. The programme comprises of Condensed Matter Physics, Materials Science and Laser Physics that forms a major tool for studying ceramics, polymers, ferrites, glass, biomolecules, non-linear optical materials etc. The course on computational physics enables the students for computer simulations in research. The physics Laboratory is equipped with the modern experimental set up. One semester project work is an essential component of curriculum for M.Sc. Physics students.

Programme Code: PH (Masters of Science in Physics).

Programme Outcomes: POs describe what students are expected to know or be able to do by the time of graduation. On the completion of the M.Sc. (Physics) Programme, the students will be able to:

	Programme Outcomes (POs)
PO1	Apply knowledge of Physics, in all the fields of learning including higher research
	and its extensions.
PO2	Scientific knowledge: Apply the knowledge of mathematics, science to solve the complex physics problems.
PO3	Problem analysis: Identify, formulate, and analyze advanced scientific problems reaching substantiated conclusions using first principles of mathematics, physical, and natural sciences.
PO4	Conduct investigations of complex problems: Use research-based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern scientific tools to complex physics problems with an understanding of the limitations.
PO6	To provide qualitative education through effective teaching learning processes by introducing projects, participative learning and latest software tools.
PO7	To inculcate innovative skills, team work, ethical practices among students so as to meet societal expectations.
PO8	To encourage collaborative learning and application of physics to real life

	situations.
PO9	To inculcate the curiosity for physics in students and to prepare them for future
	research.
PO10	Communicate: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
PO11	Getting Abilities Demonstrate the ability to conduct research independently and
	pursue higher studies towards Ph.D. degree in physics.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of scientific
	and technological change.

Program Specific Outcomes (PSOs):

	Programme Specific Outcomes					
PSO1	Understand the basic, fundamental and advance concepts of different branches of					
	physics.					
PSO2	Perform and design experiments in the areas of electronics, atomic, nuclear, solid					
	state physics, nanotechnology and computational physics.					
PSO3	Apply the concepts of physics in specialized areas of condensed, nuclear,					
	renewable energies, particle physics, etc., in industry, academia, research and day					
	today life.					
PSO4	Acquire the ability to pursue research careers, careers in academics, in industries					
	in physical science and in allied fields, and also use the knowledge obtained to					
	be trained for competing national level tests like UGC-CSIR NET, JEST, GATE,					
	UPSC Civil Services Examination etc.					
PSO5	Develop an ability to plan and execute their own innovative ideas in physical					
	science by acquiring knowledge in the form of projects, product design &					
	development, summer internship and field visit/industrial visit conducted, also					
	develop specific skills in new and advanced techniques of computational Physics					
	based on software's.					
PSO6	To improve your own learning and performance.					
PSO7	Communicate physics related ideas effectively, in writing as well as orally.					
PSO8	Recognize the need to engage in lifelong learning through continuous education,					
	and research leading to higher degrees like PhD, D.Sc. etc.					

Admission Procedure(s):

The details of the eligibility conditions and admission procedures are given in the admission forms and on the university website. The admission will be granted on the basis of merit as per University Bye-Laws. Reservation for SC, ST, PH, OBC, EWS etc. will be granted as per IASE (Deemed to be University) Bye-Laws adhering to Government rules.

Attendance Clauses:

- 1. For regular candidates in the Faculties of Sciences, the minimum attendance requirement shall be such that a candidate must have attended at least 75% of the lecturers delivered and tutorials held taken together as well as 75% of practical and CCA from the date of his/her admission.
- 2. Condonation for the shortage of attendance:

The shortage of attendance up to the limits specified below may be condoned on valid reason(s):

- Up to 6%, each subject plus 5 attendances in all the aggregate subjects/papers may be condoned by the Vice-Chancellor on the recommendation of the Head of the Department for the Post-graduate classes.
- ii) The Scout, NSS, and NCC cadets sent out to parades and camps and such students who are deputed by the University to take part in games, athletics or cultural activities may, for purpose of attendance, be treated, as present for the days of their absence in connection with the aforesaid activities and that period shall be added to their subject wise attendance.

Guidelines for Choice Based Credit System:

Definition clauses:

- 1. Academic Year: Two consecutive (one odd + one even) semesters constitute one academic year.
- 2. Choice Based Credit System (CBCS): The CBCS provides choice for students to select from the prescribed elective and skill courses. A student needs to select elective course offered by the Departments and SWAYAM/MOOCs course of the same credit in which he/she is doing core courses. This shall be part of the core Programme during the third and fourth semesters. Each student has to complete two skill courses offered by the departments/faculties/any other institution(s). The students can choose the elective courses inter-department and skill courses from any other institution(s), inter-department, inter-faculty as well.

- 3. **Course**: Usually referred to, as 'papers' is a component of a Programme. All courses need not carry the same weight. The courses should define learning objectives and learning outcomes. A course may be designed to comprise lectures/ tutorials/laboratory work/ field work/ project work/ self-study etc. or a combination of some of these.
- 4. CCC stands for 'Core Course Code' and ECC for Elective Course Code.
- 5. **Credit Based Semester System (CBSS)**: Under the CBSS, the requirement for awarding a degree is prescribed in terms of number of credits to be completed by the students.
- 6. **Credit Point**: It is the product of grade point and number of credits for a course.
- 7. **Credit**: A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one period of teaching (lecture or tutorial) or two periods of practical work/field work per week. Here one period normally equals to 50 minutes.
- 8. **Cumulative Grade Point Average (CGPA)**: It is a measure of overall cumulative performance of a student over all semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is expressed up to two decimal places.
- 9. ESE stands for 'End Semester Examination' i.e. Even Semester & SEE for 'Semester End Examination' i.e. odd semester.
- 10. Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale.
- 11. Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters O, A+, A, B+, B, C, P and F.
- 12. **Programme**: An educational programme leading to award of the Postgraduate Degree in the Core subject he/she is pursuing.
- 13. Semester Grade Point Average (SGPA): It is a measure of performance of work done in a semester. It is a ratio of total credit points secured by a student in various courses registered in a semester and the total course credits taken during that semester. It shall be expressed up to two decimal places.
- 14. Semester: Each semester will consist of 15-18 weeks of academic work equivalent to 90 actual teaching days. The odd semester may be scheduled from July to November/ December and even semester from December/January to May.

- 15. **Skill Development Course(s) Resources**: The University may develop a provision for skill development course(s) by appointment, engagement, contract services of the resources; (human, institutional) at inter-department, intra-department, intra-faculty, inter-faculty, in this University or with any other University, institution of Research, institution of Technical Expertise, Professional and institution engaged in industrial activities for academic or/and technical development of skill.
- 16. **Transcript or Grade Card or Certificate:** Based on the grades earned, a statement of grades obtained shall be issued to all the registered students after every semester. This statement will display the course details (code, title, number of credits, grade secured) along with SGPA of that semester and CGPA earned till that semester along with statement of marks.

S.	Letter		Grade
No.	Grade	Meaning	Point
1	' O'	Outstanding	10
2	'A+'	Excellent	9
3	'A'	Very Good	8
4	'B+'	Good	7
		Above	
5	' B'	Average	6
6	'С'	Average	5
7	'Р'	Pass	4
8	' F'	Fail	0
9	'Ab'	Absent	0

Grades and Grade Points: Methods to Ascertain

- i) A student obtaining Grade F in a course shall be considered failed and will be required to reappear in the University End Semester Examination.
- ii) For non-credit courses (Skill Courses) 'Satisfactory' or 'Unsatisfactory' shall be indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA

Grade Point assignment:

- = and > 95 % marks Grade Point 10.0
- 90 to less than 95 % marks Grade Point 9.5
- 85 to less than 90 % marks Grade Point 9.0
- 80 to less than 85 % marks Grade Point 8.5
- 75 to less than 80 % marks Grade Point 8.0

70 to less than 75 % marks Grade Point 7.5 65 to less than 70 % marks Grade Point 7.0 60 to less than 65 % marks Grade Point 6.5 55 to less than 60 % marks Grade Point 6.0 50 to less than 55 % marks Grade Point 5.5 45to less than 50 % marks Grade Point 5.0 40 to less than 45 % marks Grade Point 4.5 36 to less than 40 % marks Grade Point 4.0

Computation of SGPA and CGPA:

(i) The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.

SGPA
$$(S_i) = \Sigma (C_i \times G_i) / \Sigma C_i$$

where C_i is the number of credits of the *ith* course and G_i is the grade point scored by the student in the *ith* course.

(ii) The CGPA is also calculated in the same manner taking into account all the courses undergone by a student over all the semesters of a Programme, i.e.

$$\mathbf{CGPA} = \Sigma \left(C_i \times S_i \right) / \Sigma C_i$$

where S_i is the SGPA of the *ith* semester and C_i is the total number of credits in that semester.

(iii) The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

Illustration of Computation of SGPA and CGPA and Format for Transcripts:

Course	Credit	Grade Letter	Grade Point	Credit Point
Course 1	4	А	8	4x8=32
Course 2	4	B+	7	4x7=28
Course 3	4	0	10	4x10=40
Course 4	4	С	5	4x5=20
Course 5	4	A+	9	4x9=36
Course 6	4	Р	4	4x4=16
	24			172

(i) Computation of SGPA and CGPA (Illustration for SGPA)

Thus, SGPA =172/24 =7.16

Illustration for CGPA

	Semester- I	Semester- II	Semester- III	Semester- IV
Credit	24	24	24	24
SGPA	7.25	7.25	7	6.25

Thus, CGPA=(24x7.25+24x7.25+24x7+24x6.25)/96 =666/96 =6.93

Skill Courses/ Programmes (Non credit Based):

The Department of Physics shall offer skill development courses. The skill development programmes are offered by the department and sustainable development courses offered by the department/faculty/any other institution(s) or University.

Instructions for Distribution of Periods:

In view of the course content, the Department of Physics distributed the Periods between Theory/Tutorial/Practical as mentioned in course structure:

- 4 0-0(Four lectures/week) (no tutorial and practical)
- 3-1-0 (Three lectures and one tutorial per week)
- 0 0 12(12 Practical classes)-For Lab work

The Duration of the Period shall be fifty minutes. In each of the combinations, the first value stands for the same number of lecture instructions per week.

Medium of Instructions:

The medium of instructions for courses will be bilingual (Hindi and English).

Medium of Examinations:

Candidates are allowed to use only English medium for answering the questions in the examination.

Type of	Semester	Maximum	Duration	Type of
Exam/Assessment		Marks		Questions/Evaluation
		Allotted		Methods
End Semester	Even Semester	70	3 hours	Subject Specific 100
Examination	(II and IV)			MCQ. MCQ stands for
(ESE)				Multiple Choice Question
				which has 4 options with
				only 1 correct answer.
Semester End	Odd Semester	70	3 hours	Subject Specific 100
Examination	(I and III)			MCQ. MCQ stands for
(SEE)				Multiple Choice Question
				which has 4 options with only 1 correct answer.
Continuous	Throughout	30	-	Refer to Table A
Comprehensive	Every			
Assessment	Semester			
(CCA)				
Skill	Once in every	70	-	Project Work and
Development	semester			Presentation
Courses				

Marking Scheme of Examination (SEE and ESE):

Table A:

SR.	CCA: COMPONENT	MAXIMUM MARKS
NO.		
1	Monthly test	20X3 Test = 60
2	Quizzes and Assignments	10
3	Viva-voce	10
4	Seminar/Symposia	10
5	Report writing	10
6	Workshop	10
7	Review of literature	10
8	Creativity/Innovation	10
9	Experimental Skill	10
10	Co-curricular activity	10
11	Attendance	10

EXPLANATION (METHOD TO ASCERTAIN MARKS FOR CCA): CCA will be reduced to 30 marks. Formula: Marks obtained/Total marks \times 30. For example: 60 divided by 160 \times 30 = 11.25

PROVISO-I: Provided that a candidate shall be granted a relaxation in the form of exemption from CCA component. However, the said exemption must not be provided in more than 3 components in a respective course.

PROVISO-II: Provided further that this will be mandatory for a candidate to appear in the monthly test conducted in the respective course.

Attendance in Lectures, Tutorials and Practical

Percentage	Marks Allotted
75% to 80%	02
81% to 85%	04
86% to 90%	06
91% to 95%	08
Above 96%	10

Evaluation of Practical/Lab/Projects/Dissertation:

	Practical						
1.	Daily Evaluation of Practical Records/Viva-	10	Internal Evaluation (30				
	Voce		Marks)				
2.	Seminar/Presentation	10					
3.	Attendance	10					
4.	Final Practical Performance and Viva-Voce	70	External Evaluation (70				
			Marks)				
	Total	100	Marks may be rounded				
			off to nearest integer.				
	Project Works/Dis	sertation					
1.	Project Report Evaluation	70	Evaluation by two				
2.	Project Presentation and Viva-Voce	30	Examiners (one				
			internal and one				
			external)				

Skill Development Course Evaluation: Based on the performance of students and hands-on practice, the respective department/faculty where the students have completed the skill course, will declare the result as "satisfactory" or "unsatisfactory". The students have to secure two satisfactory declarations for the course completion from the respective department/faculty.

SWAYAM/MOOCs Course Evaluation (for Elective Course): The students have to opt for only those SWAYAM/MOOCs courses which are relevant to the subject and have the same credit points as offered in the course. The students have to pass the exam and earn the certificate.

Declaration of Result:

i. A student acquiring minimum of 40% in the total CCA is eligible for the next semester.

- **ii.** The student of I and II semester will be promoted to III semester only when s/he has cleared more than 50% or more courses including non-credit skill courses.
- **iii.** Both grading and marks system will be adopted reflecting the same in the grade cum mark card (i.e. statement of marks)
- iv. A student who does not pass the examination (ESE+SEE) in any course(s) or remains absent will be considered as 'FAIL' and permitted to appear in such course(s) in subsequent ESE and/or SEE or when the course is offered next time.
- v. A student who fails in one or more courses in a semester shall get three more chances to complete the same, after that the student is not eligible for the post-graduate programme. The students have to pay additional examination fees for the same.
- vi. Students have an opportunity to improve the credit with two additional chances. The credit obtained in the improvement examination will be final. The students have to pay additional examination fees for the same.
- vii. The university shall try to ensure to declare the result within a period of 20 days from the date of the completion of the examination and upload the same on the website of the university.

Grievance Redressal Mechanism:

- a) The students will have the right to make an appeal against any component of evaluation.
 Such appeal has to be made to the Head of the Department concerned as the case may be, clearly stating in writing the reason(s) for the complaint / appeal.
- b) The appeal will be assessed by the Chairman and he/she shall place it before the **Grievance Redressal Committee (GRC)**, chaired by the Dean concerned, comprising of the HOD of the concerned Department and if needed Course Teacher(s) be called for suitable explanation; GRC shall meet at least once in a semester and prior to CCA finalization.
- c) The Committee will consider the case and may give a personal hearing to the appellant before deciding the case. The decision of the Committee will be final and binding.
- d) The online and offline grievance reporting form is available.
- e) The grievance is to be redressed within 14 working days.

COURSE STRUCTURE

Courses	No. of	Semester	Lecture	Tutorial	Practical	Total	Total	Total
	Courses		(L)	(T)	(P)	Teaching Hours	Marks	Credits
Core Course	10	I and II	32	0	24	572	1000	44
(CC)	6	III and IV	20	0	12	338	600	26
Elective	3	III and IV	09	3	00	156	300	12
Course (EC)								
Project	1	IV	00	00	12	78	100	8
/Dissertation								
Skill/Sustainable	4	I, II, III	12	00	00	156	400*	Non-
Development		and IV						Credit
Course (SC)								
Total	24	I,II,III,IV	73	03	48	1300	2000	90

SEMESTER WISE COURSE STRUCTURE

			Semest	er-I						
Courses	Course		Teaching]	Load Mar		Mar	Marks Allocation		Credits
	Code(s)	Course Title	Hours	All	ocat	tion				
				L	Τ	Р	ESE	CCA	Total	
	PH-CT101	Classical Mechanics	52	4	0	0	70	30	100	4
	РН-СТ102	Quantum Mechanics – I	52	4	0	0	70	30	100	4
Com	PH-CT103	Electronics	52	4	0	0	70	30	100	4
Core Courses	РН-СТ104	Mathematical Physics	52	4	0	0	70	30	100	4
	PH-CL105	Physics Laboratory-I	78	0	0	12	70	30	100	6
Skill										
Course	PH-106SC		39	3	0	0	70*	30*	100*	*
	Total			19	0	12			500	22
Total Credits for Semester-I				22						
*Excluded in total										

			Semester	·II						
Courses	Course Code(s)	Course Title	Teaching Hours	I Allo	loa Dcat	d tion	Mar	ks Alloc	cation	Credits
				L	Τ	Р	ESE	CCA	Total	
	PH-CT201	Solid State Physics-I	52	4	0	0	70	30	100	4
Core Courses	РН-СТ202	Quantum Mechanics – II	52	4	0	0	70	30	100	4
courses	РН-СТ203	Atomic and Molecular Physics	52	4	0	0	70	30	100	4
	РН-СТ204	Numerical Methods and programming	52	4	0	0	70	30	100	4
	PH-CL205	Physics Laboratory-II	78	0	0	12	70	30	100	6
Skill										
Course	PH-206SC		39	3	0	0	70*	30*	100*	*
Total 19 0 12 500					22					
Total Credits for Semester-II				22						
*Excluded in total										

		S	emester-III							
Courses	Course	Course Title	Teaching]	Loa	d	Ma	rks Allo	ocation	Credits
	Code(s)		Hours	All	loca	tion				
				L	Т	Р	ESE	CCA	Total	
	PH-CT301	Solid State Physics-II	52	4	0	0	70	30	100	4
Core	РН-СТ302	Classical Electrodynamics-I	52	4	0	0	70	30	100	4
Courses	РН-СТ303	Statistical Physics	52	4	0	0	70	30	100	4
courses	PH-CL305	Physics Laboratory-III	78	0	0	12	70	30	100	6
Elective Courses	PH-ET 304***	Elective-I	52	3	1	0	70	30	100	4
Skill Course	PH-306SC		39	3	0	0	70*	30*	100*	*
Total 18 1 0 500					22					
Total Credits for Semester-III					22					
*Excluded in total										

			Semester-l	\mathbf{V}						
Courses	Course Code(s)	Course Title	Teaching Hours	Load Allocatio n		Marks Allocation			Credits	
				L	Τ	P	ESE	CCA	Total	
Core Courses	PH-CT401	Nuclear and Particle Physics	52	4	0	0	70	30	100	4
courses	PH-CT402	Classical Electrodynamics-II	52	4	0	0	70	30	100	4
Elective	PH-ET403	Elective-II	52	3	1	0	70	30	100	4
Courses	PH-ET404	Elective-III	52	3	1	0	70	30	100	4
Skill Course	PH-406***		39	3	0	0	70*	30*	100*	*
Project V	Vorks/Dissert	ation (PH-CL405)	78	0	0	12	70	30	100	8
Tot	tal (*Excluded	l in total)		17	2	12			500	24
Total Credits for Semester-IV				24						
			Р	rogr	am	me	Grand	Total of	Credits	90

Elective Courses:

Elective-1

Course Code	Title of the Paper	Teaching hours/week	Credit	Ν	Marks Allo	otment
		L-T-P		CCA	ESE	Total
PH-ET304(A)	Digital Electronics	3-1-0	4	30	70	100
PH-ET304(B)	Laser Physics and Applications	3-1-0	4	30	70	100
PH-ET304(C)	Advanced Semiconductor Devices	3-1-0	4	30	70	100

Elective-II

Course Code	Title of the Paper	Teaching hours/wee k	Credit	Γ	Marks Allo	otment
		L-T-P		CCA	ESE	Total
PH-ET403(A)	Physics of Nanomaterials	3-1-0	4	30	70	100
PH-ET403(B)	Experimental-Techniques in Physics	3-1-0	4	30	70	100
PH-ET403(C)	Mathematical Physics-II	3-1-0	4	30	70	100

Elective-III

Course Code	Title of the Paper	Teaching hours/wee k	Credit	N	Marks Alle	otment
		L-T-P		CCA	ESE	Total
PH-ET404 (A)	General Theory of Relativity & Cosmology	3-1-0	4	30	70	100
PH-ET404(B)	Nuclear Accelerator and Radiation Physics	3-1-0	4	30	70	100
PH-ET404(C)	Science of Renewable source of Energy	3-1-0	4	30	70	100
PH-ET404(D)	SWAYAM Course	4-0-0	4			

L= Lecture; T= Tutorial; P= Practical (Fieldwork/Dissertation/Project etc.)

	M.Sc. (Physics) SEMESTER-I					
Course Code:	PH-CT101	Course Type :	Core Course-01			
Course Title :	Classical Mechanics					
Credit:	4	Hours:	4 Hours/Week			
		Total Teaching	52 Hours			
		Hours:				
Max. Marks:	100	Minimum Pass Marks:	36			
Theory Examination:	70	Minimum Pass Marks:	25			
Internal Assessment:	30	Minimum Pass Marks:	11			
Attendance Eligibility	75 % IN RESPECTIVE SEMESTER					
Examination	ESE	Mid. TEST				
Duration	03 Hrs	1 Hr				

The primary objective is to teach the students Classical Mechanics at a level more advanced than what they have learnt in B.Sc. This is a course which forms the basis of Physics of many areas of Physics.

COURSE OUTCOMES:

- 1. Know the concept of classical mechanics.
- 2. Have deep knowledge on Lagrangian & Hamiltonian dynamics.
- 3. Interpret the dynamics of a rigid body.
- 4. Understand basic Lagrange's Poisson's brackets and Canonical transformation.
- **5.** Know the Special Theory of Relativity.

UNIT-1	Lagrangian Mechanics: Newton's laws of motion, mechanics of a system of
TEACHING	particles, constraints, Generalized coordinates, D'Alembert's principle and
HOURS(13)	Lagrange equations of motion. Velocity dependent potentials and dissipation
	function. Some applications of Lagrangian formulation, Hamilton's principle,
	derivation of Lagrange equations from the Hamilton's principle. Conservation
	theorems and symmetry properties.
	Hamiltonian dynamics: Hamiltonian function H and conservation of energy:
	Jacobi's integral and its significance, Hamilton's equation, Simple
	applications of Hamiltonian formulation, Routhian, Derivation of Hamilton's
	equation from variation principle, Principle of least actions in various forms.
UNIT-2	Central Force Problem: Two body central force problem, reduction to
TEACHING	equivalent one body problem, the equation of motion and first integrals, the
HOURS(13)	equivalent one dimensional problem and classification of orbits. The
	differential equation for the orbit and integrable power-law potential, Virial
	theorem. The Kepler problem. Scattering in a central force.
	Mechanics of rigid bodies: Kinematics of a rigid body, Euler angles, inertia
	tensor, eigenvalues of inertia tensor, orthogonal transformations, finite &
	infinitesimal rotation, moving frame of reference, Euler equation, spinning
	top, gyroscope.

UNIT-3	Canonical transformation and Hamilton Jacobi theory: Canonical
TEACHING	transformation, Legendre transformation, Generating functions, Conditions
HOURS(13)	for canonical transformation, Bilinear invariant condition.
	Poisson's brackets, Langrange brackets, Invariance of Poission bracket under
	canonical transformation, Angular momentum Poission bracket relation.
	Hamilton Jacobi equation for Hamilton's principal function, Harmonic
	oscillator problem by Hamilton Jacobi method, Hamilton's characteristic
	function.
UNIT-4	Special theory of relativity: Lorentz transformations. Length contraction.
TEACHING	Time dilation Four Vector Formulation Lagrangian and Hamiltonian of a
HOURS(13)	charged particle in presence of EM Fields. Field transformations, relativistic
110 0110(10)	kinematics and mass-energy equivalence, metric tensor, energy momentum
	tensor relative motion of charged particle in EM fields
TEACHING	1 Lecture method
	2 Problem-solving method
LEARNING	3 Demonstration and Experimental method
METHODS	4 Seminar/Symposia method
METHODS	5 Extension activity method
	6 Project and report writing
CONTINUES	1 Seminar/Symnosia
ASSESSMENT	2 Project and report writing
METHODS	2. Vivo-voce
METHODS	A Monthly tost
End Someston	NET examination for DC or any other notified by the University
Enu Semester Examination	At the time of common common of the respective comestor
mothods for	at the time of commencement of the respective semester.
nethous 101	
post graduate	
DEDIODICAL	
DEVISE OF	1. ANNUAL 2. HOWEVED THE UNVIEDSITY may ravise the syllabus at any
SVI LADIS	2. HOWEVER THE UNVIERSITT may revise the synabus at any time during the running comester after giving a notice for a period
SILLADUS	one months
SELECTED	1 Classical machanics H Coldstein C Doola I Safea III Edition
BELECTED	1. Classical mechanics, 11 Golusteni, C 1001e, J Saico, 111 Eurion, Dearson Education Inc 2018
READING	2 Classical machanics KN Sriniyasa Daa University Dress 2003
	2. Classical mechanics, KN STIIIVasa Kao, University Fress, 2005.
	5. Classical mechanics, NC Kana and PS Joag, Tata McGraw-Hill, 1991.
	4. Classical dynamics of particles and systems, JD Marian, Academic
	Fress, 1970. 5. Introduction to classical machanica Taluvala and Duranik Tata
	5. Introduction to classical mechanics, Takwale and Puralik, Tata
	6 Classical machanics ID Landay and FM Lifshitz 4th edition
	Dergemon prose 1085
	Tergamon press, 1905.
	7. Classical Miechanics, BA Kagali and I Shivalingaswamy, Himalaya
	Publications, 2016.
	o. Classical Miechanics, J.C. Upadnyaya, Himalaya Publishing House,
	2019.

M.Sc. (Physics) SEMESTER-I					
Course Code:	PH-CT102	Course Type :	Core course-02		
Course Title :	Quantum Mechanics-I				
Credit:	4	Hours:	4 Hours/Week		
		Total Teaching Hours:	52 Hours		
Max. Marks:	100	Minimum Pass Marks:	36		
Theory Examination:	70	Minimum Pass Marks:	25		
Internal Assessment:	30	Minimum Pass Marks:	11		
Attendance Eligibility	75 % IN RESPECTIVE SEMESTER				
Examination	ESE	Mid. TEST			
Duration	03 Hrs	1 Hr			

This course aims at providing an elementary introduction to the basic principles of (non-relativistic) Quantum Mechanics, its wave-mechanical and matrix mechanics formulations, and its applications to simple problems.

COURSE OUTCOMES:

- 1. Gain the aspects of historical developments of quantum mechanics and interpretation of wave particle duality
- 2. Gain the idea of development of central concept and principles of quantum mechanics such as Schrödinger equation, wave functions, and its statistical interpretation
- 3. Have the solution of Schrödinger equation for simple systems in one and three dimensions
- 4. learn about new Dirac specific notation such as bra and ket formalism and apply this notation to formulate the various problems
- 5. Gain the knowledge of angular momentum, spin and their rules for quantization.

UNIT-1 TEACHING HOURS(13)	Introductory concepts: Wave-particle duality, interpretation of the wave function, wave function for particles having a definite momentum, Schrodinger equation, Gaussian wave Packets and their time evolution, Fourier transform and momentum space wave function, Heisenberg uncertainty principle for position and momentum, conservation of probability, operators and expectation values. Ehrenfest theorem, time independent Schrodinger equation, stationery
	states and their properties, energy quantization, properties of energy Eigen functions, general solution of the time dependent Schrodinger equation for a time independent potential.
UNIT-2 TEACHING HOURS(13)	One-dimensional problems: Free-particle, box normalization, Eigen values and Eigen functions of particle in a) infinitely deep potential b) finite square well potential, and c) simple harmonic oscillator potential, potential barrier - transmission and reflection coefficients. Extension to three dimensional problems: Separation of the Schrodinger equation in Cartesian coordinates, particle in a three dimensional box.

UNIT-3	General formalism of quantum theory: Operator methods: Hilbert space,				
TEACHING	linear operators, Hermitian operators, Unitary operators, Projection operators,				
HOURS(13)	observables, Dirac notation, Matrix representation of Observables and states,				
	Eigen functions of Hermitian operators, degeneracy, commutation of operators				
	and compatibility, generalized uncertainty principle for two non-commuting				
	observables. Unitary transformations time-dependence of observables:				
	Schrodinger and Heisenberg pictures. Simple harmonic oscillator by operator				
	method				
UNIT-4	Angular momentum: Orbital angular momentum commutation relations				
	Figen values and Eigen functions. Control potential separation of variables in				
ILACIIING	the Schrödinger equation, the radial equation, the Hudrogen stom				
$\mathbf{HOUKS(13)}$	Canaral anaratan alashna of angular momentum anaratana L. L. L. Laddar				
	General operator algebra of angular momentum operators J_x , J_y , J_z . Ladder				
	operators, eigen values and eigenkets of J and J_z , matrix representations of				
	angular momentum operators, Pauli matrices, addition of angular momentum,				
	Clebsch-Gordan coefficients for the case $j_1 = j_2 = 1/2$.				
TEACHING	1. Lecture method				
AND	2. Problem-solving method				
LEARNING	3. Demonstration and Experimental method				
METHODS	4. Seminar/Symposia method				
	5. Extension activity method				
CONTINUES	O. Project and report writing Sominor/Commonie				
ASSESSMENT	1. Seminar/Symposia 2. Project and report writing				
METHODS	2. Froject and report writing 3. Vive-voce				
METHODS	4 Monthly test				
Semester and	NET examination for PG or any other nattern notified by the University at the				
Examination	time of commencement of the respective semester.				
methods for					
post graduate					
programme					
PERIODICAL	1. ANNUAL				
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any time				
SYLLABUS	during the running semester after giving a notice for a period one months.				
SELECTED	1. Introduction to Quantum Mechanics, David J Griffiths, 2 nd Edition,				
READING	Pearson Prentice Hall.				
	2. Quantum Mechanics, BH Bransden and CJ Joachain, 2 nd Edition,				
	Pearson Education, 2007.				
	3. Quantum Mechanics, VK Thankappan, 2 nd Edition, Wiley Eastern				
	Limited, 1993.				
	5. Quantum Mechanics, LI Schiff, 3 rd Edition, McGraw Hill Book				
	Company, 1955.				
	6. Modern Quantum Mechanics, JJ Sakurai, Revised Edition, Addison-				
	Wesley, 1995.				
	7. Principles of Quantum Mechanics, R Shankar, 2 nd Edition, Springer,				
	1994.				
	8. Quantum Mechanics, E Merzbacher, John Wiley and Sons, 1998.				
	9. Quantum Physics, S Gasiorowicz, John Wiley and Sons 2014.				

M.Sc. (Physics) SEMESTER-I				
Course Code:	PH-CT103	Course Type :	Core Course-03	
Course Title :	Electronics			
Credit:	4	Hours:	4 Hours/Week	
		Total Teaching Hours:	52 Hours	
Max. Marks:	100	Minimum Pass Marks:	36	
Theory Examination: 70		Minimum Pass Marks:	25	
Internal Assessment: 30		Minimum Pass Marks:	11	
Attendance Eligibility 75 % IN RESPECTIVE SEMESTER				
Examination	ESE Mid. TEST			
Duration	03 Hrs 1 Hr			

To make students familiar with basic and advanced analog and digital electronics used in circuit and instrument designing. To provide practical knowledge, electronics based design problems are included.

COURSE OUTCOMES:

- 1. Understand the basic knowledge of various semiconductor devices such as BJT, FET and MOSFET.
- 2. Acquire knowledge on Operational Amplifier and its applications.
- 3. Know the building blocks of digital systems and the logic families.
- 4. Familiarize with feed back in amplifiers and multi-vibrators.

UNIT-1	Physics of Semiconductor Devices: Review of current flow mechanism in
TEACHING	junction diode, static & dynamic resistance, semiconductor devices; diodes,
HOURS(13)	junctions, transistors, field effect devices, homo and hetero junction devices,
	device structure, device characteristics, frequency dependence and
	application, Zener diode as voltage regulator and current application of
	diodes, load line, optoelectronic devices; solar cells, photo detectors, LEDs,
	noise in electronic circuits, Noise sources.
UNIT-2	Feedback circuits: Feedback concept, positive and negative feedback,
TEACHING	Barkhausen criterion, RC phase shift oscillator, Wein bridge oscillator,
HOURS(13)	Hartley and Colpitt's oscillators, Nyquist criterion, Multivibrators: astable,
	monostable and bistable multivibrator, Comparators, Square and triangle
	wave form generators. UJT relaxation oscillator, Schmitt Trigger, 555 timer
	based astable multivibrator.

UNIT-3	Differential amplifier: Circuit configurations, dual input, balanced output					
TEACHING	differential amplifier. DC analysis and AC analysis, inverting and non					
HOURS(13)	inverting inputs. Block diagram of typical OP-Amplifier. Constant current-					
	bias level translator. Open loop configuration inverting and non-inverting					
	amplifiers and Frequency- response					
	OP-Amp Parameters: Input offset voltage, bias currents, input offset current,					
	output offset voltage CMRR frequency response Slew rate OP-Amp with					
	negative feedback voltage series feedback effect of feed-back on closed loop					
	gain input and output resistance hand width					
	OP-Amp Applications: DC and AC amplifier voltage follower Adder					
	subtractor multiplier phase changer Active filters Active Integrator and					
	active differentiator					
UNIT-4	Digital electronics: Boolean algebra De Morgan's theorems standard forms					
TEACHING	of Boolean expressions Gates K-man number systems and codes Half and					
HOURS(13)	Full Adders Flin-flops Registers Counters D/A conversion and A/D					
	conversion					
	Microwave Devices: Principal and working of Gunn diode IMPATT diode					
	Operation of Klystrons Reflex klystrons and Magnetron					
TEACHING	1. Lecture method					
AND	2. Problem-solving method					
LEARNING	3. Demonstration and Experimental method					
METHODS	4. Seminar/Symposia method					
	5. Extension activity method					
	6. Project and report writing					
CONTINUES	1. Seminar/Symposia					
ASSESSMENT	2. Project and report writing					
METHODS	3. Viva-voce					
	4. Monthly test					
Semester End	NET examination for PG or any other pattern notified by the University					
Examination	at the time of commencement of the respective semester.					
methods for	Å					
post graduate						
programme						
PERIODICAL	1. ANNUAL					
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any					
SYLLABUS	time during the running semester after giving a notice for a period					
	one months.					
SELECTED	1. Semiconductor Devices Physics and Technology, SM Sze, 3rd Edition,					
READING	John Wiley and Sons Inc. Asia, 2006.					
	2. Solid State Electronic Devices, Ben G Streetman, Sanjay Bannerjee, 7th					
	edition, Pearson, Asia, 2014.					
	3. The art of electronics, Paul Horowitz and Winfield Hill, Second Edition,					
	Foundation Books, Delhi, 2008.					
	4. Electronic Principles, AP Malvino and J Bates, Eighth Edition, Tata					
	McGraw Hill, Delhi, 2016.					
	5. Op-Amps and Linear Integrated Circuits, RA Gayakwad, 4th Edition,					

Eastern Economy Edition, 2004.
6. Operational Amplifiers with Linear Integrated Circuits, William Stanley,
4th Edition, CBS Publishers, 2002.
7. Linear Integrated Circuits, D Roy Choudhury and Shail Jain, 4th Edition,
New Age International Ltd, 2010.
8. Digital principles and applications, DP Leach and AP Malvino, 5th Edition,
Tata McGraw Hill, 2002.
9. Digital systems, Principles and applications, RJ Tocci and NS Widmer,
10th Ed, Pearson Education, 2007.
10. Introduction to electronic devices, MichealShur, PHI, 1996.

M.Sc. (Physics) SEMESTER-I					
Course Code:	PH-CT104	Course Type :	Core Course-04		
Course Title:	Mathematical Physics				
Credit:	4	Hours:	4 Hours/Week		
		Total Teaching	52 Hours		
		Hours:			
Max. Marks:	100	Minimum Pass	36		
		Marks:			
Theory Examination:	70	Minimum Pass	25		
		Marks:			
Internal Assessment:	30	Minimum Pass	11		
		Marks:			
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER				
Examination	ESE	Mid. TEST			
Duration	03 Hrs	1 Hr			

The main objective of this course is to familiarize students with a range of mathematical methods that are essential for solving advanced problems in quantum mechanics, electrodynamics and other fields of theoretical physics.

COURSE OUTCOMES:

- 1. Understand and apply the mathematical skills to solve quantitative problems in the study of physics.
- 2. Learn about special type of matrices that are relevant in physics.
- 3. Will enable students to apply integral transform to solve mathematical problems of interest in physics.
- 4. Learn the fundamentals and applications of Fourier series, Fourier and Laplace transforms.

UNIT-1	Coordinate Systems: Orthogonal coordinate systems, Gradient, Curl,
TEACHING	Divergence and Laplacian in orthogonal coordinate systems, Spherical, Polar
HOURS(13)	and Cylindrical co-ordinates, Poisson's and Laplace Equations, Green's
	theorem.
	Theory of Probability: Random Variables, Binomial, Poisson and Normal
	Distributions. Central Limit Theorem.
UNIT-2	Linear Vector Spaces & Matrices: Linear independence, Bases,
TEACHING	Dimensionality, Inner product, Linear transformations, Matrices, Cayley-
HOURS(13)	Hamiltonian Theorem, matrix representation of operators, unitary & hermatian
	matrices, diagonalization of matrices, Eigen values & Eigen vectors.
	Complex Variables: Analytical functions, Cauchy Riemann conditions,
	Cauchy's integral theorem, Cauchy's integral formula, Taylor and Laurent's
	Series expansions, Cauchy's residue theorem, Simple examples of contour
	integration.

UNIT-3	Special Functions: Series solution of linear differential equations with				
TEACHING	variable coefficients, Legendre, Bessel, Hermite, Laguerre, Associated				
HOURS(13)	Laguerre polynomials and their generating functions, Recurrence relations,				
	Orthogonal properties and Rodrigue's formula.				
UNIT-4	Integral Transform: Review of Fourier series, expansion of function in				
TEACHING	Fourier series, Fourier integrals, sine and cosine transforms, Laplace, inverse				
HOURS(13)	Laplace transform & convolution, Fourier Transform, Shift theorem &				
	convolution, solution of differential equations with the help of Laplace &				
	Fourier transform.				
TEACHING	1. Lecture method				
AND	2. Problem-solving method				
LEARNING	3. Demonstration and Experimental method				
METHODS	4. Seminar/Symposia method				
	5. Extension activity method				
	6. Project and report writing				
CONTINUES	1. Seminar/Symposia				
ASSESSMENT	2. Project and report writing				
METHODS	3. Viva-voce				
Conceptor and	4. Monthly test				
Semester and	NET examination for PG or any other pattern notified by the University				
Examination	at the time of commencement of the respective semester.				
methods for					
post graduate					
programme					
PERIODICAL DEVISE OF	1. ANNUAL 2. HOWEVED THE UNVIEDSITY may revise the collabor of envi				
KEVISE OF	2. HOWEVER THE UNVIEKSITY may revise the synabus at any time during the manning consistent often giving a notice for a pariod				
SILLABUS	time during the running semester after giving a notice for a period				
SELECTED	011e months.				
READING	1. Iviauleinaucai rilysics, v. Dalakrisinian, ist Euluon, Ane Books, 2018				
KEADING	2010. 2 Mathematical Methods for Physicists C. Arfkon 7th Edition				
	Elsevier 2012				
	3. Advanced Engineering Mathematics, E. Krevzig, 2nd Edition,				
	Pearson. 2002.				
	4. Complex variables. MR Spiegel, Schaum Series, Metric edition,				
	McGraw Hill, 1981.				
	5. Linear Algebra – Seymour Lipschutz, Schaum Outlines Series, 4th				
	Edition, 2009.				
	6. Mathematical physics, Satya Prakash, Pragati Prakashan.				
	7. Matrices and Tensors in Physics - AW Joshi, 3rd edition, Wiley				
	Eastern Ltd, 1995.				
	8. Vector Analysis, Schuam Series, Mc Graw Hill.				

PH-CL105Physics Laboratory-IL T P: 0-0-126 CreditsCourse Objectives: This is a laboratory course to provide hands on knowledge of some basic
experiments in optics and electronics. This course provides the student with the practical skills to
understand the basic of semiconductor and components like diode, transistor, FET, MOSFET
and operational amplifier. Students equipped with the knowledge and training provided in the
course will be able to participate in design, development and operation in the different area of
electronics system.

Course Outcomes: On the completion of the course, the students will be able to

CO1 To study basics of semiconductor & devices and their applications in different areas.

CO2	То	study	different	biasing	techniques	to	operate	transistor,	FET,	MOSFET	and
	ope	rationa	l amplifier	in differ	ent modes.						

CO3 Analyze output in different operating modes of different semiconductor devices.

- **CO4** Compare design issues, advantages, disadvantages and limitations of basic electronics
- **CO5** Able to design and perform scientific experiments as well as accurately record and analyze the results of experiments.

CONTENTS

The students will be required to perform 12 experiments in each semester from the following list of experiments.

Analog Electronics:

- 1. Device Characteristics and Application
 - a) p-n junction diodes-clipping and clamping circuits.
 - b) FET characteristics, biasing and its applications as an amplifier.
 - c) MOSFET characteristics, biasing and its applications as an amplifier.
 - d) UJT characteristics and its application as a relaxation oscillator.
 - e) SCR Characteristics and its application as a switching device.
- 2. To design & study any one of the following using transistor/ operational amplifier on a bread board:
 - a) Hartley oscillator
 - b) Colpitt oscillator
 - c) Wein bridge oscillator
 - d) Phase shift oscillator
- 3. Operational-Amplifier: To study the following mathematical operations
 - a) Adder
 - b) Subtractor
 - c) Integrator (for ac i/p and dc i/p signal)
 - d) Differentiator
- 4. Study of two stage transistor amplifier and effect of feedback.
 - a) Frequency response of a transistorised RC coupled amplifier with no feedback.
 - b) Frequency response of the amplifier with negative feedback.
 - c) Frequency response of the amplifier with positive feedback.
- 5. Study of Operational- Amplifier as:
 - a) Inverting amplifier
 - b) Non-Inverting amplifier
 - c) Emitter Follower

- 6. Design and study of dc power supply with various filters and IC regulator.
- 7. Study of two stage transistor amplifier and effect of feedback.
 - a) Frequency response of a transistorised RC coupled amplifier with no feedback.
 - b) Frequency response of the amplifier with negative feedback.
 - c) Frequency response of the amplifier with positive feedback.
- 8. Measurement of amplitude, frequency and phase of given signals using oscilloscope.
- 9. To study the waveform characteristics of multivibrators (A stable, Mono-stable and Bistable) and determine its frequency by varying R.
- 10. To study of IC 555 Timer.
- 11. To study characteristics of Zener diode and use in voltage Regulation.

Optics:

- 12. Determine angle of specific rotation of sugar solution by using Polarimeter.
- 13. To verify Malus law & to determine Brewster's angle for glass.
- 14. To determine diameter of the even and odd rings by using Newtons rings apparatus.
- 15. To determine the grating element of a diffraction grating with the help of spectrometer.
- 16. Fresnel's Biprism.
 - a) To determine the wavelength of sodium light with the help of Fresnel's Biprism.
 - b) To determine the thickness of mica sheet.
- 17. Michelson interferometer.
 - a) To determine the wavelength of monochromatic sodium light.
 - b) To determine the difference in wavelength between sodium D lines.
 - c) To determine the refractive index of glass.
- 18. Any other experiments of the equivalent standard can be set.

Suggested Readings:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006
- **2.** Electronics Principles and Applications: A.B. Bhattacharya, New Central Book Agency P.Ltd., Kolkata, 2007.
- **3.** Integrated Electronics Analog and Digital Circuits and Systems: J. Millman, C.C Halkins and C. Parikh, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.
- 4. Electronic Instrumentation and Measurement Techniques, W. D. Cooper and A. D. Helfrick, 2nd Ed., Phi Learning, 2008.
- 5. Electronic Devices and Circuits, J. Millman and C. C. Halkias and S. Jit., 4th Ed., McGraw-Hill, 2015.

M.Sc. (Physics) SEMESTER-II					
Course Code:	PH-CT201	COURSE TYPE :	Core Course-01		
Course Title:	Solid State Physics-I				
Credit:	4	Hours:	4 Hours/Week		
		Total Teaching	52 Hours		
		Hours:			
Max. Marks:	100	Minimum Pass	36		
		Marks:			
Theory Examination:	70	Minimum Pass	25		
		Marks:			
Internal Assessment:	30	Minimum Pass	11		
		Marks:			
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER				
Examination	ESE	Mid. TEST			
Duration	03 Hrs	1 Hr			

This course intends to provide knowledge of conceptual solid-state physics. In addition, this course aims to provide a general introduction to theoretical and experimental topics in solid state physics.

COURSE OUTCOMES:

- 1. Learn about crystalline state of solids and X-ray diffraction
- 2. Learn about various types of crystal bonding and lattice dynamics
- 3. Understand various types of defects that exist in crystals.
- **4.** Learn about free electron theory of metals

UNIT-1 TEACHING HOURS(13)	Crystal structure: Crystalline state - periodic arrangement of atoms-lattice translation vectors. The basis and crystal structure, primitive and non-primitive lattice cell-fundamental types of lattice, 2d and 3d Bravais lattice and crystal systems. Elements of symmetry operations-points and space groups-nomenclature of crystal directions and crystal planes-miller indices. X-ray diffraction: Scattering of x-rays, Laue conditions and Bragg's law, atomic scattering factor, geometrical structure factor, Reciprocal lattice and its properties.
UNIT-2	Crystal Binding: Bond classifications – types of crystal binding, covalent,
TEACHING	molecular and ionic crystals, London theory of van der Waals, hydrogen
HOURS(13)	bonding, cohesive and Madelung energy.
	Defects and Diffusion in Solids: Point defects: Frenkel defects, Schottky
	defects, examples of colour centres, line defects and dislocations.

UNIT-3	Lattice Dynamics: Failure of the static lattice model, adiabatic and harmonic						
TEACHING	approximation, vibrations of linear monoatomic lattice, one-dimensional						
HOURS(13)	lattice with basis, models of three- dimensional lattices, quantization of lattice						
	vibrations, Einstein and Debye theories of specific heat, phonon density of						
	states, neutron scattering.						
UNIT-4	Free electron theory of metals: Free electron model, Electrons moving in one						
TEACHING	dimensional potential well, three dimensional potential well, quantum state						
HOURS(13)	and degeneracy, the density of states, Fermi - Dirac statistics, effect of						
	temperature on Fermi distribution function, the electronic specific heat.						
	Electrical conductivity of metals, relaxation time and mean free path, electrical						
	conductivity and Ohm's law, thermal conductivity, Wiedemann-Franz law,						
	thermionic emission, the energy distribution of the emitted electrons, field						
	enhanced electron emission from metals, changes of work function due to						
	absorbed atoms, the contact potential between two metals, Hall effect.						
TEACHING	1. Lecture method						
AND	2. Problem-solving method						
LEARNING	3. Demonstration and Experimental method						
METHODS	4. Seminar/Symposia method						
	5. Extension activity method						
	6. Project and report writing						
CONTINUES	1. Seminar/Symposia						
ASSESSMENT	2. Project and report writing						
METHODS	3. Viva-voce						
<u> </u>	4. Monthly test						
Semester and	NET examination for PG or any other pattern notified by the University						
Examination	at the time of commencement of the respective semester.						
methods for							
post graduate							
DEDIODICAL							
DEVISE OF	2 HOWEVED THE UNVIEDSITY may ravise the syllabus at any time						
SVI I A RUS	during the running semester after giving a notice for a period one						
SILLADUS	months.						
SELECTED	1. Introduction to Solid State Physics, C. Kittel, 8th Edition,						
READING	Wiley, 2012.						
	2. Solid State Physics, A. J. Dekker, 1st Edition, Macmillan India,						
	2000.						
	3. Solid State Physics, G. Burns, 1st Edition, Academic Press, 1985.						
	4. Condensed Matter Physics, M. P. Marder, Wiley, 2010.						
	5. Elementary Solid state physics, MA Omar, Addison Wesley, New						
	Delhi, 2000.						
	o. Solid state Physics, SO Pillai. New Age International Publication,						
	2002. 7 Solid state Physics MA Wahah Narosa Publishing House New Dolhi						
	1999.						
	8. Solid State Physics, HC Gupta, Vikas Publishing House, New						
	Delhi, 2002.						

M.Sc. (Physics) SEMESTER-II			
Course Code:	PH-CT202	Course Type:	Core Course-02
Course Title:	Quantum Mechanics-I	Quantum Mechanics-II	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	ESE Mid. TEST	
Duration	03 Hrs	1 Hr	

The primary objective is to teach the students various approximation methods in quantum mechanics. The important topic of quantum scattering is also dealt with. Relativistic quantum theory like Klein-Gordon equation and Dirac equation is also covered.

COURSE OUTCOMES:

- 1. Learn various approximation techniques of solving the quantum mechanical problems.
- 2. Develop the theory of scattering processes.
- 3. Explain the relativistic quantum mechanical equations, namely, Klein-Gordon equation and Dirac equation.
- 4. Get basic information needed for advanced courses like quantum field theory.

UNIT-1 TEACHING HOURS	Approximation Methods for stationary problems: Time-independent Perturbation theory (non-degenerate and degenerate) and applications to fine structure splitting, Zeeman effect (Normal and anomalous), Stark effect, and other simple cases, Variational method and applications to helium atom and simple cases; WKB approximation and applications to simple cases.
UNIT-2	Approximation Methods for time-dependent perturbations: Interaction
TEACHING	picture, Time- dependent perturbation theory. Transition to a continuum of
HOURS	final states - Fermi's Golden Rule, Application to constant and harmonic
	perturbations, Sudden and adiabatic approximations, Semi-
	classical theory of interaction of atoms with radiation.
UNIT-3	Collision in 3-D and scattering: Laboratory and reference frames; Scattering
TEACHING	amplitude; differential scattering cross section and total scattering cross
HOURS	section; Scattering by spherically symmetric potentials; Partial wave analysis
	and phase shifts; Scattering by a perfectly rigid sphere and by square well
	potential; complex potential and absorption. Born approximation.

UNIT-4	Relativistic Quantum Mechanics: Klein-Gordon and Dirac-equations,		
TEACHING	Properties of Dirac matrices. Plane wave solutions of Dirac equation. Spin and		
HOURS	magnetic moment of the electron, non-relativistic reduction of the Dirac		
	equation.		
TEACHING	1. Lecture method		
AND	2. Problem-solving method		
LEARNING	3. Demonstration and Experimental method		
METHODS	4. Seminar/Symposia method		
	5. Extension activity method		
	6. Project and report writing		
CONTINUES	1. Seminar/Symposia		
ASSESSMENT	2. Project and report writing		
METHODS	3. Viva-voce		
	4. Monthly test		
Semester and	NET examination for PG or any other pattern notified by the University		
Examination	at the time of commencement of the respective semester.		
methods for			
post graduate			
nrogramme			
programme			
PERIODICAL	1. ANNUAL		
PERIODICAL REVISE OF	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any 		
PERIODICAL REVISE OF SYLLABUS	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period 		
PERIODICAL REVISE OF SYLLABUS	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. 		
PERIODICAL REVISE OF SYLLABUS SELECTED	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. Quantum Mechanics, LI Schiff, 3rd Edition, McGraw Hill Book 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. Quantum Mechanics, LI Schiff, 3rd Edition, McGraw Hill Book Company, 1955. 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. Quantum Mechanics, LI Schiff, 3rd Edition, McGraw Hill Book Company, 1955. Modern Quantum Mechanics, JJ Sakurai, Revised Edition, 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. Quantum Mechanics, LI Schiff, 3rd Edition, McGraw Hill Book Company, 1955. Modern Quantum Mechanics, JJ Sakurai, Revised Edition, Addison-Wesley, 1995. 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. Quantum Mechanics, LI Schiff, 3rd Edition, McGraw Hill Book Company, 1955. Modern Quantum Mechanics, JJ Sakurai, Revised Edition, Addison-Wesley, 1995. Principles of Quantum Mechanics, R Shankar, 2nd Edition, 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. Quantum Mechanics, LI Schiff, 3rd Edition, McGraw Hill Book Company, 1955. Modern Quantum Mechanics, JJ Sakurai, Revised Edition, Addison-Wesley, 1995. Principles of Quantum Mechanics, R Shankar, 2nd Edition, Springer, 1994. 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Introduction to Quantum Mechanics, David J Griffiths, 2nd Edition, Pearson Prentice Hall, 2005. Quantum Mechanics, BH Bransden and CJ Joachain, 2nd Edition, Pearson Education, 2007. Quantum Mechanics, VK Thankappan, 2nd Edition, Wiley Eastern Limited, 1993. Quantum Mechanics, LI Schiff, 3rd Edition, McGraw Hill Book Company, 1955. Modern Quantum Mechanics, JJ Sakurai, Revised Edition, Addison-Wesley, 1995. Principles of Quantum Mechanics, R Shankar, 2nd Edition, Springer, 1994. Quantum Mechanics, E Merzbacher, John Wiley and Sons, 1998. 		

M.Sc. (Physics) SEMESTER-II				
Course Code:	PH-CT203	Course Type:	Core Course-03	
Course Title:	Atomic and Molecular	Atomic and Molecular Physics		
Credit:	4	Hours:	4 Hours/Week	
		Total Teaching	52 Hours	
		Hours:		
Max. Marks:	100	Minimum Pass	36	
		Marks:		
Theory Examination:	70	Minimum Pass	25	
		Marks:		
Internal Assessment:	30	Minimum Pass	11	
		Marks:		
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER			
Examination	ESE	Mid. TEST		
Duration	03 Hrs	1 Hr		

The main objective is to teach the students the basic atomic and molecular structures with quantum mechanical approach leading to their fundamental spectroscopies.

COURSE OUTCOMES:

- 1. Know about the emission and absorption spectra of the atoms.
- 2. Know about the different energy levels in atoms and various coupling schemes.
- 3. Understand the interaction of atomic and molecular energy level with electric and magnetic fields.
- 4. Understand about the spectra of molecules
- 5. The spectroscopies would serve as the fundamentals for various concerned experimental results.

UNIT-1	Atomic Physics-A: Brief review of early atomic models of Bohr and		
TEACHING	Sommerfeld: One electron atom; Atomic orbitals, spectrum of Hydrogen atom:		
HOURS	Energy levels and selection rules, Rydberg atoms, relativistic correction to the		
	kinetic energy, spin – orbit interaction and fine structure in alkali spectra, Lamb		
	shift. Magnetic dipole hyperfine structure, energy shift, hyperfine transition on		
	Hydrogen, Isotope shifts.		
UNIT-2	Atomic Physics–B: Interaction with external fields: (Quantum mechanical		
TEACHING	treatment) Zeeman effect and Anomalous Zeeman effect – magnetic interaction		
HOURS	energy, selection rules, splitting of levels in Hydrogen atom. Linear stark effect		
	order correction to energy and Eigen states: Paschen-Back effect, Two electron		
	atom: ortho & para states, role of Pauli exclusion principle, level schemes of		
	two electron atoms. Many electron atoms: LS and JJ coupling scheme, Lande		
	interval rule.		

UNIT-3	Molecular Physics-A: Born-Oppenheimer approximation		
TEACHING	(qualitative). Classification of molecules: Rotational spectra of diatomic		
HOURS	molecules as a rigid rotator, centrifugal distortion and non-rigid rotator,		
	intensity of rotational lines, Rotational spectra of symmetric rotors,		
	Experimental technique of microwave spectroscopy. Raman scattering and		
	polarizability, Rotational Raman spectrum of diatomic and linear polyatomic		
	molecules. Experimental technique. Applications of Raman spectroscopy:		
	Determination of nuclear spin.		
UNIT-4	Molecular Physics-B: Vibrational energy of diatomic molecule diatomic		
TEACHING	molecules as simple harmonic oscillator, anharmonicity, effect of		
HOURS	anharmonicity on vibrational terms energy levels and spectrum Morse		
	potential energy curve. Vibrational Raman effect. Rovibronic spectrum of a		
	diatomic molecule with example. Diatomic molecules in excited vibrational-		
	states Mutual exclusion principle Correlation between Raman and IR		
	spectroscopy Experimental technique of IR spectroscopy: IR spectrometer		
	Applications of IR spectroscopy: Material characterization and structural		
	elucidation		
TEACHINC	1 Lecture method		
	2 Problem solving method		
AND I FADNINC	2. Demonstration and Experimental method		
LEAKINING METHODS	5. Demonstration and Experimental method		
METHODS	4. Seminar/Symposia method		
	5. Extension activity method		
CONTINUES	6. Project and report writing		
	1. Seminar/Symposia 2. Project and report writing		
ASSESSMENT	1. Seminar/Symposia 2. Devices and report writing		
ASSESSMENT	 Semmar/Symposia Project and report writing Viva-voce 		
ASSESSMENT METHODS	 Semmar/Symposia Project and report writing Viva-voce Monthly test 		
ASSESSMENT METHODS	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at		
ASSESSMENT METHODS Semester and Examination	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester.		
ASSESSMENT METHODS Semester and Examination methods for	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester.		
ASSESSMENT METHODS Semester and Examination methods for post graduate	 Semmar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester.		
Semester and Examination methods for post graduate	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. 1. ANNUAL		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. Atoms, Molecules and Photons, W. Demtroder, Springer, 2006 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. Atoms, Molecules and Photons, W. Demtroder, Springer, 2006 Fundamentals of Molecular Spectroscopy, C. N. Banwell, McGraw 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. Atoms, Molecules and Photons, W. Demtroder, Springer, 2006 Fundamentals of Molecular Spectroscopy, C. N. Banwell, McGraw Hill, 1983. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. Atoms, Molecules and Photons, W. Demtroder, Springer, 2006 Fundamentals of Molecular Spectroscopy, C. N. Banwell, McGraw Hill, 1983. Basic atomic & Molecular Spectroscopy, J. M. Hollas, RSC, 2002. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. Atoms, Molecules and Photons, W. Demtroder, Springer, 2006 Fundamentals of Molecular Spectroscopy, C. N. Banwell, McGraw Hill, 1983. Basic atomic & Molecular Spectroscopy, J. M. Hollas, RSC, 2002. Molecular Structure and Spectroscopy, G Aruldhas, PHI, New Delhi. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. Atoms, Molecules and Photons, W. Demtroder, Springer, 2006 Fundamentals of Molecular Spectroscopy, C. N. Banwell, McGraw Hill, 1983. Basic atomic & Molecular Spectroscopy, J. M. Hollas, RSC, 2002. Molecular Structure and Spectroscopy, G Aruldhas, PHI, New Delhi, 2001. 		
ASSESSMENT METHODS Semester and Examination methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 Seminar/Symposia Project and report writing Viva-voce Monthly test NET examination for PG or any other pattern notified by the University at the time of commencement of the respective semester. ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Atomic Spectra and Atomic Structure, G. Herzberg, Dover Publications, 2003. Molecular Spectra and Molecular Structure, G. Herzberg ,Van Nostrand, 1950. Atoms, Molecules and Photons, W. Demtroder, Springer, 2006 Fundamentals of Molecular Spectroscopy, C. N. Banwell, McGraw Hill, 1983. Basic atomic & Molecular Spectroscopy, G Aruldhas, PHI, New Delhi, 2001. Fundamentals of Molecular Spectroscopy, Banwell, Tata McGraw 		

M.Sc. (Physics) SEMESTER-II			
Course Code:	PH-CT204	COURSE TYPE :	Core Course-04
Course Title :	Numerical Methods and programming		
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

To familiarize the students with the numerical techniques to solve the problems related to science, engineering and research areas.

COURSE OUTCOMES:

- 1. Find numerical solutions of the system of linear equations with accuracy and obtain numerical solutions of algebraic transcendental equations.
- 2. Get knowledge about various interpolating methods.
- 3. Solve initial and boundary value problems in differential equations using numerical methods and apply various numerical methods
- 4. Know the FORTRAN programming language.

UNIT-1	Roots of Equations: Errors in numerical calculations, definition of root or		
TEACHING	zero of a function, Numerical solution of transcendental equations, concept of		
HOURS	iterative methods. Bisection method, False position method, Newton-Raphson		
	method, Secant method, Successive iteration, Comparison of different root		
	methods, Properties of roots of polynomial.		
	Solution of Simultaneous Linear equation: Direct Method: Gauss		
	elimination, Pivoting, Gauss-Jordon method, Matrix inversion. Iterative		
	methods: Jacobi iteration method, Gauss Seidel iteration method.		
UNIT-2	Interpolation: Polynomial interpolation, Newton formula for interpolation,		
TEACHING	Forward differences, Differences of polynomial, Backward differences,		
HOURS	Lagrange's interpolation, Divided differences interpolation and inverse		
	interpolation, Finite difference operators, Spline interpolation, Least square		
	curve fitting, Linear regression.		

UNIT-3	Numerical Differentiation and Integration: Numerical differentiation, First		
TEACHING	order derivative by a two point formula, Numerical Integration, Trapezoidal		
HOURS	rule of integration, Simpson's 1/3 rule, Simpson's 3/8 rule of integration,		
	Double integration, Newton-Cotes formulae of integration, Gaussian		
	integration formula, Gaussian two point formula.		
UNIT-4	Solution of first order ordinary differential equations, Taylor series method		
TEACHING	and Euler's method, Modified Euler's method, Runge-Kutta method, Higher		
HOURS	order Runge-Kutta formulas, Predictor corrector methods, Finite difference		
	methods, Optimization, Single variable optimization Algorithm.		
	Fortran: Flow charts, Algorithms, Integer and floating point arithmetic,		
	Precision, Variable types, Arithmetic statements, Input and output statements,		
	Control statements, Executable and non-executable statements, Arrays,		
	Repetitive and logical structures, Subroutines and functions, Operation		
	with files, Operating systems, Creation of executable programs.		
TEACHING	1. Lecture method		
AND	2. Problem-solving method		
LEARNING	3. Demonstration and Experimental method		
METHODS	4. Seminar/Symposia method		
	5. Extension activity method		
	6. Project and report writing		
CONTINUES	1. Seminar/Symposia		
ASSESSMENT	2. Project and report writing		
METHODS	3. Viva-voce		
	4. Monthly test		
Semester and	NET examination for PG or any other pattern notified by the University		
Examination	at the time of commencement of the respective semester.		
methods for			
post graduate			
programme	4 A 3.73.787 A 4		
PERIODICAL	I. ANNUAL		
KEVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any time during the manning connection often giving a notice for a period		
SILLADUS	one months		
SELECTED	1 Mathematical Methods in the Physical Sciences Mary I Roas		
READING	Wiley New York 1983		
	2 Methods of Numerical Analysis S.S. SastryIntroductorY Prentice-		
	Hall of India 1979		
	3 Numerical computational methods P B Patil and U P Verma		
	Narosa Publishing House Pyt Ltd New Delhi		
	4 Mathematical Methods for Physicists George Arfken Hans		
	Weber, Frank E, Harris 7th Ed, Elsevier 2012		
	5. An Introduction to Computational Physics, Tao Pang, Cambridge		
	University Press, 2010.		

PH-CL	205 Physics Laboratory-II	L T P : 0-0-12	6 Credits
Course Objectives: This is a laboratory course to provide hands on knowledge of some basic			
experiments in digital-electronics, solid state physics, and computational physics. This course			
will ena	will enable the students to study the physical properties of different kind of materials and their		
behavio	behavior under external magnetic, electric fields and temperature. This course will also develop		
programming skills in the students in order to write and implement their own computer programs			
for solving problems arising in science, engineering and research.			
Course	• Outcomes: On the completion of the course, the students	will be able to	
CO1	Acquire hands on experience of handling and building di	gital electronics	circuits.
CO2	Capable of using components of digital electronics for va	arious application	s.
CO3	The band gap, magneto resistance, resistivity and c	harge carrier co	oncentration in
	semiconductors		
CO4	Apply their knowledge of computer programming to de	velop and implei	ment their own
	computer codes of numerical methods for solving differ	rent types of con	plex problems
	viz. nonlinear equations, system of linear equations,	interpolation and	extrapolation,
	numerical differentiation and integration, numerical, etc		
CO5	Able to design and perform scientific experiments as	well as accurate	ely record and
	analyze the results of experiments		
CO6	Solve problem with critical thinking and analytical reaso	ning.	

CONTENTS

The students will be required to perform 10 experiments in each semester from the following list of experiments.

Solid State Physics:

- 1. To study Hall Effect and to determine Hall coefficient.
- 2. Study of B-H curve of a Ferromagnetic material (both hard and soft).
- 3. Calibration of electromagnet and magnetic susceptibility determination of magnetic salts (MnSO₄, MnCl₂) by Quincke's method.
- 4. Determination of Hysteresis loss by CRO.
- 5. To determine energy gap and resistivity of the semiconductor using four probe method.
- 6. Verification of Stefan's Law by electrical method.
- 7. To study the characteristics of a solar cell
- 8. To find magneto resistance of semiconductor.
- 9. Study of a Heat Capacity of Solids.

Computational Physics: Mathematica / Mat Lab / SCI-Lab

- 10. Determination of Roots
- 11. Curve fitting using MATLAB/FORTORN.
- 12. Numerical integration (Simpson's rule/ Trapezoidal rule) using MATLAB/FORTORN.
- 13. Numerical double integration using MATLAB.
- 14. Matrix Manipulation and Interpolation.

Digital Electronics:

- 15. To assemble Logic gates using discrete components and to verify truth table.
- 16. Study of logic circuits TTL, NAND, NOR and XOR gates.
- 17. To verify the Dmorgan's law using Logic Gates circuit
- 18. To study the operation of Analog to Digital convertor.
- 19. To study the operation of Digital to Analog convertor
- 20. To study the operation of Encoders and Decoders.
- 21. To assemble Logic gates using discrete components and to verify truth table.

Suggested Readings:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.
- **3.** Integrated Electronics Analog and Digital Circuits and Systems: J. Millman, C.C Halkins and C. Parikh, 2 nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.
- 4. Elementary Solid state physics, MA Omar, Addison Wesley, New Delhi, 2000.
- 5. Solid state Physics, SO Pillai. New Age International Publication, 2002.
- 6. Solid state Physics, MA Wahab, Narosa Publishing House, New Delhi, 1999.
- 7. Numerical Recipes in C: The Art of Scientific Computing, William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, 2nd Ed., Cambridge University Press, 2002.
- 8. Mathematical Methods for Physicists, George Arfken, Hans Weber, Frank E. Harris, 7th Ed., Elsevier, 2012.
- **9.** Lab. Manual for Computer Programming & Numerical Methods, Dept. of Physics & Astrophysics, University of Delhi, 2017.

M.Sc. (Physics) SEMESTER III			
Course Code:	PH-CT301	Course Type :	Core Course-01
Course Title :	Solid State Physics-II	Solid State Physics-II	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

This course intends to provide knowledge of conceptual solid-state physics. In addition, this course aims to provide a general introduction to theoretical and experimental topics in solid state physics by covering band theory, semiconductors, superconductivity, dielectrics and magnetic properties of solids.

COURSE OUTCOMES:

- 1. Learn about energy bands in solids
- 2. understand the basics theory of semiconductors
- 3. Grasp the concepts and basic ideas related to superconductivity.
- 4. Learn about dielectric properties of solids.
- 5. Learn about magnetic properties and various aspects of semiconductors.

UNIT-1 TEACHING HOURS (13)	Band theory: Bloch theorem, Bloch function and their eigen values. Kronig penny model, Tight bonding approximation for SC, BCC and FCC. Nearly free electron model, Wigner Seitz method, construction of the Fermi surfaces, de. Hass-Von Alfen effect, Cyclotron resonance, magneto resistance and quantum Hall effect.	
UNIT-2	Semiconductors: Introduction to semiconductors, band structure of	
TEACHING	semiconductors, Intrinsic and extrinsic semiconductors, expression for carrier	
HOURS(13)	concentration (only for intrinsic), ionization energies, charge neutrality	
	equation, conductivity-mobility and their temperature dependence, Hall effect	
	in semiconductors.	
UNIT-3	Superconductivity: Basic phenomena, Meissner effect, Critical field, Type- I	
TEACHING	and Type- II superconductors, Heat capacity, Isotope effect, London	
HOURS(13)	equations, Coherence length, BCS theory of superconductivity, Flux	
	quantization, Normal tunneling, dc and ac Josephson Effect, SQUID, High temperature superconductors.	

UNIT-4 TEACHING HOURS(13)	Dielectrics: Introduction, Review of basic formulae, Dielectric constant and displacement vector -different kinds of polarization-local electric field-Lorentz field- Clausius Mossotti equation relation- expressions for electronic, ionic and dipolar polarizability, Ferroelectricity and piezo electricity. Magnetism: Review of basic formulae -classification of magnetic materials-Langevin theory of diamagnetism, para-magnetism and Ferromagnetism, domains-Weiss molecular field theory (classical)-Heisenberg exchange interaction theory-Antiferro-magnetism and ferrimagnetism, ESR & NMR.			
TEACHING AND	1. Lecture method 2. Problem-solving method			
LEARNING	3. Demonstration and Experimental method			
METHODS	4. Seminar/Symposia method			
	5. Extension activity method			
CONTINUES	6. Project and report writing			
CONTINUES	1. Seminar/Symposia 2. Project and report writing			
METHODS	3. Viva-voce			
	4. Monthly test			
Semester and	NET examination for PG or any other pattern notified by the University			
Examination	at the time of commencement of the respective semester.			
methods for				
post graduate				
PERIODICAL	1. ANNUAL			
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any			
SYLLABUS	time during the running semester after giving a notice for a period			
	one months.			
READING	1. Introduction to Solid State Physics, C. Kittel, 8 th Edition, Wiley, 2012.			
MEADING	 Solid State Physics, A. J. Dekker, 1st Edition, Macmillan India, 2000. Solid State Physics, G. Purns, 1st Edition, Academic Press, 1085. 			
	4 Condensed Matter Physics, M. P. Marder, Wiley 2010			
	5. Elementary Solid state physics, MA Omar, Addison Wesley, New			
	Delhi, 2000.			
	6. Solid state Physics, SO Pillai. New Age International Publication,			
	2002. 7 Solid state Dhysics, MA Wohsh, Nerses Dublishing House, New Dalki			
	7. Solid state Physics, MA wanab, Narosa Publishing House, New Delni, 1999			
	8. Solid State Physics, HC Gupta, Vikas Publishing House, New Delhi.			
	2002.			

M.Sc. (Physics) SEMESTER III				
Course Code:	PH-CT302	Course Type:	Core Course-02	
Course Title :	Classical Electrodynam	nics-I		
Credit:	4	Hours:	4 Hours/Week	
		Total Teaching	52 Hours	
		Hours:		
Max. Marks:	100	Minimum Pass	36	
		Marks:		
Theory Examination:	70	Minimum Pass	25	
		Marks:		
Internal Assessment:	30	Minimum Pass	11	
		Marks:		
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER			
Examination	ESE	Mid. TEST		
Duration	03 Hrs	1 Hr		

This course will enable the students to evaluate fields and forces in Electrodynamics and Magneto dynamics using basic scientific method. The course provides concepts of relativistic electrodynamics and its applications in branches of Physical Sciences. It also makes students able to apply knowledge acquired through this paper to various types of problems of electromagnetic.

COURSE OUTCOMES:

- 1. Basic knowledge of charge, electric field, potential, potential energy, uniqueness theorem and its application.
- 2. Understand about the boundary value problems in electrostatics as method of images.
- 3. Develop a knowledge and understanding of magneto statics, electromagnets, solenoid, toroid.
- 4. Develop a firm basis to understand multipoles, dipole moment, polarization, boundary value problems with dielectrics.
- 5. Develop a knowledge and understanding of electromagnetic fields, Maxwell's equations, conservations laws, scalar and vector potentials.

UNIT-1	Electrostatics: Electric field; Gauss Law; Differential form of Gauss' law;				
TEACHING	Equation of electrostatics and the scalar potential; surface distribution of				
HOURS(13)	charges and dipoles and discontinuities in the electric field and potential;				
	Poisson and Laplace equations; Uniqueness Theorem; Green's Reciprocity				
	Theorem; Formal solutions of potential by Green's function; Electrostatic				
	potential energy and energy density.				
	Boundary Value Problems in Electrostatics: Methods of Images; A point				
	charge near an infinite conducting plane; Point charge in the presence of a				
	conducting sphere: Case (a) When the conducting sphere is grounded; Case				
	(b) When the conducting sphere is insulated; Case (c) When the conducting				
	sphere is charged and insulated; Conducting sphere in a uniform electric field				
	by method of images; Green function for the grounded conducting sphere in				
	the field of a charge q; Green function for the sphere: General solution for the				
	potential; Conducting sphere with hemispheres at different potentials.				

UNIT-2	Multipoles, Electrostatics of Macroscopic Media, Dielectrics: Spherical
TEACHING	Harmonics; Multipole expansions; Monopole moment; Dipole moment;
HOURS(13)	Quadruple moment; Multipole expansions in Cartesian coordinates; multipole
	expansion of the energy of a charge distribution in an external field;
	Elementary treatment of electrostatics with permeable media; Boundary value
	problems with dielectrics; Molecular polarizability and electric susceptibility;
	A molecular model of the polarizability: Models for molecular polarizability:
	Displacement polarization. Orientation Polarization: Electrostatic energy in
	dielectric media
UNIT-3	Magnetostatics: Introduction and definition: Biot-Savart Law: the differential
TEACHING	equation of Magnetostatics and Ampere's law. Vector potential and magnetic
HOURS(13)	induction for a circular current loop: magnetic fields of a localized current
	distribution magnetic moment: force and torque on and energy of a localized
	current distribution in an external magnetic induction: macroscopic equations
	boundary conditions on B and H: methods of solving Boundary value
	Problems in Magnetostatics: uniformly magnetized sphere: magnetized sphere
	in an external field, permanent magnetic magnetic shielding, spherical shell of
	na an external field, permanent magnetic, magnetic sinciding, spherical shell of
LINIT A	Floatradynamics: Foraday's law Francy in magnetic fields Maywell's
UNII-4 TEACIUNC	equations Maxwell's displacement automate Maxwell's equations and
IEACHING	equations, Maxwell's displacement current, Maxwell's equations and
HOUKS(13)	magnetic charge, Maxwell's equations inside matter, boundary conditions.
	Maxwell's equations, conservation laws: Energy in a magnetic field, vector
	and scalar potentials, Gauge transformations, Lorentz gauge, Coulomb gauge,
	Green function for the wave equation, derivation of the equations of
	macroscopic electromagnetism, Poynting's theorem and conservation of
	energy and momentum for a system of charged particles and EM fields,
	conservation laws for macroscopic media.
TEACHING	1. Lecture method
AND	2. Problem-solving method
LEAKINING	5. Demonstration and Experimental method
METHODS	5 Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester and	NET examination for PG or any other pattern notified by the University
Examination	at the time of commencement of the respective semester.
methods for	Å
post graduate	
programme	
PERIODICAL	1. ANNUAL
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any
SYLLABUS	time during the running semester after giving a notice for a period
	one months.

SELECTED READING	 Classical Electrodynamics, John David Jackson, 3rd Edition, Wiley, 1998.
	2. Introduction to Electrodynamics, David Griffiths, 4 th Edition, CU Press, 2020
	3. Principles of Electrodynamics, Melvin Schwartz, Dover Publications, 1987.
	4. Classical Electromagnetic Radiation, MA Heald and JB Marion, Saunders, 1983.
	5. Electrodynamics, Gupta, Kumar, Singh, Pragathiprakashan,18th edition, 2010.
	 Modern Problems in Classical Electrodynamics, Charles A. Brau Oxford Univ. Press, 2003.

M.Sc. (Physics) SEMESTER III				
COURSE CODE:	PH-CT303	Course Type:	Core Course-03	
COURSE TITEL:	Statistical Physics			
Credit:	4	Hours:	4 Hours/Week	
		Total Teaching	52 Hours	
		Hours:		
Max. Marks:	100	Minimum Pass	36	
		Marks:		
Theory Examination:	70	Minimum Pass	25	
		Marks:		
Internal Assessment:	30	Minimum Pass	11	
		Marks:		
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER			
Examination	ESE	Mid. TEST		
Duration	03 Hrs	1 Hr		

This course introduces students to statistical mechanics, which is part of the foundation of several branches of physics and has many applications beyond physics. The course demonstrates the profound consequences of an economical set of assumptions about nature known as the postulates of statistical mechanics. In particular, it shows how the postulates explain the general laws of thermodynamics as well as properties of classical and quantum gases, other condensed matter systems in equilibrium, and phase transitions.

COURSE OUTCOMES:

- 1. Understand the basic concept of statistical mechanics to describe systems containing huge numbers of particles.
- 2. Know & understand the fundamental postulate of equilibrium statistical mechanics.
- 3. Understand & be able to apply Classical Thermodynamics to simple problems.
- 4. Understand & be able to apply the Micro-Canonical, Canonical, & Grand Canonical Ensembles to appropriate physical systems.
- 5. Understand the quantum statistical physics of fermions & bosons, also be able to apply
- 6. Fermi & Bose Statistics to various many particle systems.

UNIT-1	Brief review of thermal Physics: Extensive and intensive variables, laws of					
TEACHING	thermodynamics, entropy and Gibbs paradox, thermodynamic potentials,					
HOURS(13)	chemical potential, Jacobian determinant, Maxwell's relations and their					
	applications.					
	Statistical description of many-particle systems: Binomial, Gaussian, and					
	Poisson distributions, central limit theorem.					
	Classical statistical mechanics: Phase space, Liouville's theorem. Microstates					
	and macrostates, postulates of equal a priori probability, probability					
	calculations, accessible states, constraint, equilibrium, irreversibility					
	Reversible and irreversible processes, Thermal interaction between					
	macroscopic systems. classical ideal gas, entropy of mixing and Gibb's					
	paradox.					

UNIT-2	Classical ensemble theory: Concept of ensembles, micro-canonical; canonical			
TEACHING	and grand canonical ensembles; system in grand canonical ensembles, partition			
HOURS(13)	function: principle of equipartition energy Energy of Harmonic oscillator:			
	nartition function for canonical ensemble: energy fluctuations in the canonical			
	ensemble: partition function and Thermodynamic function for grand canonical			
	ensemble; density fluctuations in the grand cononical ensemble; theory of			
	ensemble, density fluctuations in the grand canonical ensemble, theory of			
	paramagnetism; negative temperature.			
UNII-3	Quantum statistical mechanics: Basic concepts-quantum ideal gas, identical particles			
IEACHING	and symmetry requirement, difficulties with Maxwell-Boltzmann statistics, quantum			
HOURS(13)	distribution functions, bosons and Fermions. Bose-Emistern statistics, ideal Bose gas,			
	photons, Bose-Einstein condensation. Specific heat of ideal Bose gas, Fermi-Dirac			
	statistics, Fermi energy, ideal Fermi gas. properties of simple metals, Pauli			
LINIT A	Phase transitions: Cluster expansion for a classical gas. Virial equation of state			
UNII-4 TEACHINC	Dynamical model of phase transition Ising model in zeroth approximation Ising			
HOURS(13)	model in first approximation. Exact solution in one-dimension. Landau theory of phase			
$\mathbf{HOURS}(\mathbf{IS})$	transition scaling hypothesis for thermodynamic functions			
	Thermodynamics fluctuation: Thermodynamics fluctuation spatial correlation			
	Brownian motion Langevin theory fluctuation dissipation theorem. The Fokker-			
	Planck equation			
TEACHING	1. Lecture method			
AND	2. Problem-solving method			
LEARNING	3. Demonstration and Experimental method			
METHODS	4. Seminar/Symposia method			
	5. Extension activity method			
	6. Project and report writing			
CONTINUES	1. Seminar/Symposia			
ASSESSMENT	2. Project and report writing			
METHODS	3. Viva-voce			
	4. Monthly test			
Semester and	NET examination for PG or any other pattern notified by the University at the			
Examination	time of commencement of the respective semester.			
methods for				
post graduate				
programme				
PERIODICAL	I. ANNUAL			
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the synabus at any time during			
SILLADUS	the running semester after giving a notice for a period one months.			
SELECTED	1. Fundamentals of Statistical and Thermal Physics, F Reif, First Edition, Levant			
KLADINO	Books, 2010.			
	2. Statistical Physics of Particles, Mehran Kardar, Cambridge University Press,			
	2007.			
	3. Statistical Mechanics, Kerson Huang, ²⁴ Edition, Wiley-India, 2008.			
	4. Principles of statistical Mechanics, Richard Follman Claredon Press, 1979.			
	5. Statistical Mechanics, K.K. Pathria, Butterworth-Heinemann, 1996.			
	0. Fundamentals of Statistical Mechanics, BB Laud, 5 Edition, New Age			
	7 Statistical Machanias: An Advanced course with problems and			
	solutions Ryogo Kubo North-Holland 1965			

M.Sc. (Physics) SEMESTER III: (Elective-I)				
Course Code:	PH-ET304(A)	Course Type:	Elective Course-01	
Course Title:	Digital Electronics			
Credit:	4	Hours:	4 Hours/Week	
		Total Teaching	52 Hours	
		Hours:		
Max. Marks:	100	Minimum Pass	36	
		Marks:		
Theory Examination:	70	Minimum Pass	25	
		Marks:		
Internal Assessment:	30	Minimum Pass	11	
		Marks:		
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER			
Examination	ESE	Mid. TEST		
Duration	03 Hrs	1 Hr		

The objective of this course is to provide the fundamental concepts associated with the digital logic and circuit design. To introduce the basic concepts and laws involved in the Boolean algebra and logic families and digital circuits. To familiarize with the different number systems, logic gates, and combinational and sequential circuits utilized in the different digital circuits and systems. The course will help in design and analysis of the digital circuit and system.

COURSE OUTCOMES:

- 1. Became familiar with the digital signal, positive and negative logic, Boolean algebra, logic gates, logical variables, the truth table, number systems, codes, and their conversion from to others.
- 2. Understand the concept of minimization techniques for Boolean algebra.
- 3. Analyze Combination logic circuit such as multiplexers, adders, decoders.
- 4. Understand about synchronous and asynchronous sequential logic circuits.

UNIT-1	Number System and Codes: Radix and Radix conversions, sign, magnitude				
TEACHING	& complement notation. Weighted and nonweighted codes, BCD codes, self-				
HOURS(13)	complementing codes, cyclic codes, error detecting and correcting codes,				
	ASCII & EBCDIC codes. Alphanumeric codes. Fixed point and floating point				
	arithmetic. BCD arithmetic.				

UNIT-2	Boolean Algebra and Digital Logic Gates: Features of Boolean algebra,			
TEACHING	postulates of Boolean algebra, theorems of Boolean algebra. Fundamental			
HOURS(15)	logic gates, derived logic gates, logic diagrams and Boolean expressions.			
	Converting logic diagrams to universal logic. Positive, negative and mixed			
	logic.			
	Minimization Technique: Minterm, Maxterm, Karnaugh's maps,			
	simplification of logic functions with K-map, conversions of truth tables in			
	SOP & POS forms, incompletely specified functions, variable mapping,			
	Quinn- Mcklusky method.			
UNIT-3	Switching Circuit and Logic Families: Diode, BJT, FET as switch. Different			
TEACHING	types of logic families: RTL, TTL, open collector TTL, three state output			
HOURS(10)	logic, TTL subfamilies, MOS, CMOS, ECL IIL.			
UNIT-4	Combination System: Combinational logic circuit design, Half and full adder			
TEACHING	& subtractors. Binary serial and parallel adders, BCD adder. Binary			
HOURS(14)	multiplier, comparator, decoders, encoders, multiplexer, de-multiplexer, Code			
	converters.			
	Sequential Systems: Latches, Flip-Flop: R-S, D, J-K, T, Master slave. Flip-			
	flop conversions. Counters: asynchronous & synchronous counter. Counter			
	design, counter applications. Registers: buffer & shift register.			
TEACHING	7. Lecture method			
AND	8. Demonstration and Experimental method			
LEARNING	9. Problem-solving method			
METHODS	10. Seminar/Symposia method			
	11. Extension activity method			
	12. Project and report writing			
CONTINUES	5. Seminar/Symposia			
ASSESSMENT	6. Project and report writing			
METHODS	7. Viva-voce			
	8. Monthly test			
Semester End	NET examination for PG or any other pattern notified by the University			
Examination	at the time of commencement of the respective semester.			
methods for				
post graduate				
programme				
PERIODICAL	3. ANNUAL			
REVISE OF	4. HOWEVER THE UNVIERSITY may revise the syllabus at any			
SYLLABUS	time during the running semester after giving a notice for a period			
	one months.			
SELECTED	1. Digital principles and Applications, Malvino and Leach, Tata Mc			
KEADING	Graw Hill Co.			
	2. Digital Logic and computer Design, M.Morris Mano, Tata Mc Graw			
	Hill Co.			
	3. Digital circuits and design, S.Salivahnan, S.Anvazhagar.			
	4. Modern Digital Electronics, R. P. Jain, 3rd Edition, Tata McGraw-			
	Hill, 2007.			

M.Sc. (Physics) SEMESTER III: (Elective-I)				
Course Code:	PH-ET304(B)	Course Type:	Elective Course-01	
Course Title :	Laser Physics and App	lication		
Credit:	4	Hours:	4 Hours/Week	
		Total Teaching	45L+15T = 60 Hours	
		Hours:		
Max. Marks:	100	Minimum Pass	36	
		Marks:		
Theory Examination:	70	Minimum Pass	25	
		Marks:		
Internal Assessment:	30	Minimum Pass	11	
		Marks:		
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER			
Examination	ESE	Mid. TEST		
Duration	03 Hrs	1 Hr		

Laser, the light extraordinary, has so many applications in various field even having further potential and hence it has urgent need to familiarize lasers & their technical advances to the students so that students be ready to apply coherent light to solve various problems in areas such as scientific, industrial, healthcare etc.

COURSE OUTCOMES:

- 1. To apply the knowledge acquired of laser fundamentals to technological uses.
- 2. To apply the gained skills of optics and quantum optics into development of laser systems
- 3. To develop laser physics concepts into ultra short laser pulse generation technology
- 4. To apply the concepts of laser physics to develop and working of various laser systems

UNIT-1	Properties of laser beams: Monochromaticity, Coherence: spatial and
TEACHING	temporal coherence; directionality, brightness. Homogeneous and
HOURS(10)	inhomogeneous broadening. Einstein coefficient A & B and Laser rate
	equations.
UNIT-2	Population inversions, gain and gain saturation; Laser oscillations above
TEACHING	threshold; Requirements for obtaining population inversions; Laser pumping
HOURS(10)	requirements and techniques. Stability conditions, Three level and four level
	lasers; Issues in designing a laser.
UNIT-3	Laser cavity modes; Longitudinal and Transverse laser modes, properties of
TEACHING	laser modes; Stable laser resonators and Gaussian beams; Special Laser
HOURS(10)	Cavities and Cavity Effects: Unstable Resonators, Q-Switching, Gain
	Switching, Mode Locking; Pulse-Shortening Techniques, Cavities for
	Producing Spectral Narrowing of Laser Output.

TEACHING Lasers Excimer Lasers Carbon Diovide Lasers Nd·VAC and Nd·Cl	
A A A A A A A A A A A A A A A A A A A	200
HOURS(15) Lasers, Titanium Sapphira Laser, Quantum Well Diode Laser, Free Elect	100
Laser (EEL): high intensity laser metter interaction	OII
Laser (FEL), filgh intensity laser matter interaction.	n
industry applications: laser cutting, welding, drilling & incromacining	ig,
aser in medicine: light-ussue interaction, Optical Conference Tomogra	my
(OC1); satellite Laser ranging and Lasers in astronomy.	
TEACHING I. Lecture method	
AND 2. Demonstration and Experimental method	
LEARNING 3. Problem-solving method	
METHODS 4. Seminar/Symposia method	
5. Extension activity method	
6. Project and report writing	
CONTINUES 1. Seminar/Symposia	
ASSESSMENT 2. Project and report writing	
METHODS 3. Viva-voce	
4. Monthly test	
Semester End NET examination for PG or any other pattern notified by the Univers	ity
Examination at the time of commencement of the respective semester.	Ū
methods for	
post graduate	
programme	
PERIODICAL 1. ANNUAL	
REVISE OF 2. HOWEVER THE UNVIERSITY may revise the syllabus at a	nv
SYLLABUS time during the running semester after giving a notice for a per	od
one months.	0.02
SELECTED 1. Laser Fundamentals, William T. Silfvast, 2nd edition, Cambrid	lge
READING University Press 2004	-8-
2. Optoelectronics: An Introduction, John Hawkes and John	
Wilson 3rd edition Prentice Hall Europe 1998	
3 Atomic and Laser Spectroscopy A Corney 1st edition Oxfo	rd
Clarendon Press 1977	14.
4 Principles of Lasers Orazio Svelto 5th edition Springer 2010	
5 Solid State Laser Engineering W Koechner 5th edition Spring	er
1000	<i>C</i> 1,
6 Optical Electronics Ajoy Chatak and K. Thyagarajan, Cambrid	lae
0. Optical Electronics, Ajoy Ghatak and K. Thyagarajan, Camor	ige

M.Sc. (Physics) SEMESTER III: (Elective-I)			
Course Code:	PH-ET304(C)	Course Type :	Elective Course-01
Course Title :	Advanced Semiconduc	etor Devices	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	45L+15T = 60 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

This core course is for M.Sc. (Physics) students to make them familiar with basic and advanced semiconductor devices and their practical application

COURSE OUTCOMES:

- 1. Understand of basic design principles and constructional details of specialized semiconductor devices used for high frequency applications in modern communication networks and systems.
- 2. To understand the use of semiconducting devices for diverse applications acting as signal/light sources, detection of signals and transduction of analog signals used in day to day electronics.
- 3. Enhanced awareness of the constant evolution in the physics of semiconductor devices and materials, the basic device design along-with the standard technological procedures adapted in the semiconductor industry for IC manufacturing and mass production of semiconductor devices.
- 4. Get knowledge of Basics of semiconductor devices such as Microwave Devices, Photonic Devices, Memory devices and their working.
- 5. To understand the various steps involves in the fabrication of semiconductor devices.

UNIT-1	Microwave Devices: Klystrons amplifiers, velocity modulation, Basic
TEACHING	principles of two cavity klystrons, Multicavity klystron amplifier and Reflex
HOURS(14)	klystron oscillator, Magnetrons, principles of operation of magnetrons and
	Travelling wave tube (TWT). Transferred electron devices, Gun effect,
	Principles of operations, modes of operation, Read diode, IMPATT diode, and
	TRAPATT diode.
UNIT-2	Photonic Devices: Radiative transition and optical absorption, LED,
TEACHING	Semiconductor lasers, heterostructures and quantum well devices,
HOURS(13)	photodetector, Schottky barrier and p-I-n photodiode, avalanche photodiode,
	photomultiplier tubes, electro-optic and magneto-optic devices.

UNIT-3	Memory Devices: Volatile-static and D-RAM, CMOS and NMOS, non-
TEACHING	volatile-NMOS, ferroelectric semiconductors, optical memories, magnetic
HOURS(13)	memories, charge coupled devices (CCD). Other Devices: Piezoelectric,
	pyroelectric and magnetic devices. SAW and integrated devices
UNIT-4	Fabrication of Semiconductor Devices: Vacuum techniques, thin film
TEACHING	deposition techniques, diffusion of impurities, , Czochralski Process, MBE
HOURS(5)	Technique, MOCVD
TEACHING	1. Lecture method
AND	2. Demonstration and Experimental method
LEARNING	3. Problem-solving method
METHODS	4. Seminar/Symposia method
	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester End	NET examination for PG or any other pattern notified by the University
Examination	at the time of commencement of the respective semester.
methods for	
post graduate	
programs	
PERIODICAL	1. ANNUAL
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any
SYLLABUS	time during the running semester after giving a notice for a period
	one months.
SELECTED	1. Physics of Semiconductor Devices, S. M. Sze and K. K.
READING	Ng (3rd Ed., Wiley, 2008)
	2. Semiconductor devices Physics and Technology, S. M.
	Sze (2nd Ed., Wiley, 2008)
	3. Microwave Devices and Circuits, S. Y. Liao (3rd Ed.,
	Pearson, 2003)
	4. Electronic Instrumentation and Measurement
	Techniques, W. D. Cooper and A. D. Helfrick (2nd Ed.,
	1 million in the second s

PH-	Physics Laboratory-III	L T P : 0-0-	6 Credits
CL305		12	
Course (D bjectives: This is a laboratory course to provide hand	ls on knowledge	of some basic
experime	nts in nuclear physics, laser physics & spectroscopy	and nanosciend	ce. The major
objective	of this course is to understand concepts of nuc	clear physics/las	er physics &
spectrosc	spectroscopy and nanoscience through standard set of experiments. In addition, the continuous		
evaluation process allows each and every student to not only understand and perform the			d perform the
experime	nt but also suitably correlate them with the correspondin	g theory.	
Course (utcomes: On the completion of the course, the students	will be able to	
CO1 I	earn and perform nuclear physics, Laser physics experi-	ment.	
CO2	acquire hands on experience of using particle detectors s	uch as GM count	ter
CO3 U	Inderstand the basic of nuclear safely management.		
CO4	Vorking of LASERs and determination of LASER wave	length, application	ons of LASERs
i	n different domains of engineering and technology.		
CO5 <i>A</i>	ble to design and perform scientific experiments as	well as accurate	ely record and
ε	nalyze the results of experiments		-
CO6	ble to analysis of structural and Surface morphology ch	aracterization of	nanomaterials.

CONTENTS

The students will be required to perform 12 experiments in each semester from the following list of experiments.

Nuclear Physics, Laser physics & spectroscopy and nanoscience:

- 1. To study characteristics of a GM counter and to verify inverse law.
- 2. To study the absorption spectrum of Iodine vapour.
- 3. To study the variation of refractive index of the material of the prism with wavelength and to verify Cauchy's dispersion formula.
- 4. To determine the wavelength of He-Ne laser source by diffraction method.
- 5. Study of diffraction of laser beam by a slit.
- 6. To measure the wavelength of a given laser by using Michelson's Interferometer.
- 7. Measurement of thickness of thin wire with laser.
- 8. Determination of characteristic parameters of an optical fiber.
- 9. Determination of the Plank's Constant by Photo cell.
- 10. Determination of Plank's constant using LED's.
- 11. Determination of the 'e/m' ratio of electron by magnetron valve method.
- 12. Characteristics of Photovoltaic Cell.
- 13. Measure the numerical aperture and propagation loss in an optical fiber using He-Ne laser source.
- 14. Photoconductivity Experiment

(i) To plot the current-voltage characteristics of a CdS photo-resistor at constant irradiance

(ii) To measure the photocurrent as a function of irradiance at a constant voltage.

- 15. Estimation of band energy gap of a semiconductor.
- 16. Determination of wavelength of sodium light and laser light using Fabry-Perot interferometer.
- 17. Wavelength of laser by diffraction method (Reflection or Transmission grating).

- 18. Structural characterization of nanomaterials by XRD- determination of average grain/particle size, lattice parameters, strains etc.
- 19. Surface morphological characterization of nanomaterials by SEM.
- 20. Surface morphological characterization of nanomaterials by TEM.
- 21. Measurement and analyses of UV/vis Absorption spectrum of nanomaterials.
- 22. Measurement and analysis of Photoluminescence spectrum of nanomaterials.
- 23. Measurement and analysis of Raman spectrum of nanomaterials.
- 24. Any other experiments of the equivalent standard can be set.

Suggested Readings:

- 1. Lasers: Fundamental and Applications, Graduate Text in Physics, 2nd edition, K. Thyagarajan, Ajoy ghatak, Springer, 2002
- 2. Teaching laser physics by experiments, Am. J. Phys., (2011), http://doi.org/1-3488984
- Nanostructured materials and nanotechnology, Hari Singh Nalwa., Academic Press, USA, 2002
- 4. Hand book of Nanostructured Materials and Technology. Vol.1-5, Hari Singh Nalwa, Academic Press, USA, 2000.
- Handbook of Nanoscience, Engineering and Technology, W.Gaddand, D.Brenner, S.Lysherski and G.J.Infrate. Electrical Engineering Handbook, CRC Press, 2012.
- 6. Sol-Gel Science, C.J. Brinker and G.W. Scherrer, Academic Press, Boston, 1994.
- 7. Nanoscale Characterization of Surfaces & Interfaces, N John Dinardo, Weinheim Cambridge: Wiley-VCH, 2000
- Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Ray F. Egerton, Springer, 2005
- Scanning Probe Microscopy: Analytical Methods (NanoScience and Technology), Roland Wiesendanger, Springer, 1968.

M.Sc. (Physics) SEMESTER-IV			
Course Code:	PH-CT401	Course Type:	Core Course-01
Course Title :	Nuclear & Particle Phy	vsics	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

To impart knowledge of basic properties of nuclei and nuclear structure, nuclear models, nuclear reactions and applications of nuclear physics. Capability of elementary problem solving in nuclear and particle physics, and relating theoretical predictions and measurement results.

COURSE OUTCOMES:

- 1. Have knowledge of nuclear size, shape, binding energy etc. and also the characteristics of nuclear force in detail.
- 2. Have an understanding of the nuclear decay modes, radioactive decay, and the interaction of nuclear radiation with matter.
- 3. Gain knowledge about various nuclear models and potentials associated.
- 4. Have broad understanding of basic experimental radiation-detection techniques,
- 5. Understand the basic forces in nature and classification of particles and study in detail conservations laws and quark models in detail.

UNIT-1	Nuclear Interactions and Nuclear Reactions: Nuclear sizes and shapes.
TEACHING	Experimental methods of determining nuclear radius. Two-nucleon problem:
HOURS(13)	Deuteron problem. Nucleon- nucleon interaction, exchange forces and tensor
	forces, meson theory of nuclear forces, nucleon, nucleon scattering, Effective
	range theory, spin dependence of nuclear forces, charge independence and
	charge symmetry of nuclear forces, Isospin formalism, Yukawa interaction.
	Direct and compound nuclear reaction mechanisms, cross sections in terms of
	partial wave amplitudes, compound nucleus, scattering matrix, Reciprocity
	theorem, Breit- Wigner one-level formula, Resonance scattering.

UNIT-2	Nuclear models: Liquid drop model, Semi empirical mass formula and
TEACHING	isobaric stability, Bohr- wheeler theory of fission, Experimental evidence for
HOURS(13)	shell effects- shell model, spin, orbit coupling, magic numbers, Angular
	momenta and parities of nuclear ground states, Qualitative discussion and
	estimates of transition rates, magnetic moment and Schmidt lines, Collective
	model of Bohr and Mottelson, Rotational and vibrational spectra and
	elementary idea of unified model.
UNIT-3	Nuclear Decays: Beta decay, Fermi theory of beta decay, Comparative half,
TEACHING	lives, Parity violation, Two component theory of neutrino decay, Detection and
HOURS(13)	properties of neutrino Gamma decay, Multipole transition in nuclei Angular
	momentum and parity selection rules Internal conversion, Nuclear isomerism.
	General ideas of nuclear radiation detectors, Linear acceleration, Betatron,
	Proton- synchrotron, Electron synchrotron.
UNIT-4	Elementary Particles: Types of interaction between elementary particles,
TEACHING	Hadrons and leptons, Symmetry and conservation laws, Elementary ideas of :
HOURS(13)	CP and CPT invariance, Classification of hadrons, lie algebra, SU(2)-SU(3)
	multiplets, Quark model, Gell Mann- Okubo mass formula for octet and
	decuplet hadrons, Charm, bottom and top quarks.
TEACHING	1. Lecture method
AND LEADNING	2. Problem-solving method 2. Demonstration and Evnerimental method
METHODS	5. Demonstration and Experimental method
METHODS	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
Comeston and	4. Monthly test
Semester and Examination	NET examination for PG of any other pattern notified by the University at the time of commencement of the respective semester
methods for	time of commencement of the respective semester.
post graduate	
programme	
PERIODICAL	1. ANNUAL
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any time
SYLLABUS SELECTED	during the running semester after giving a notice for a period one months.
READING	1. Introducing Nuclear Physics, K. S. Krane, Wiley India, 2008.
MIMERIC	2. Nuclear Physics in A Nutshell, C. A. Bertulani, 1 th Ed., Princeton
	University Press, 2007 Concept of Nuclear Physics B. I. Cohen. McGraw – Hill. 2003
	4 Nuclear Physics- an Introduction, S. B. Patel New Age international (P) Ltd.
	1991.
	5. Nuclear Physics, S. N. Ghoshal, First Edition, S. Chand Publication.
	6. Nuclear & Particle Physics : An Introduction, B. Martin, Willey, 2006.
	7. Introduction to Elementary Particles, D. Griffiths, Academic Press, 2 nd Ed.
	2008.
	 Introduction to Nuclear Physics, wong, 2 nd edition, PHI, 2007. Nuclear Physics, RR Roy and BP Nigam, Wiley-Eastern Ltd, 1983.

M.Sc. (Physics) SEMESTER IV			
Course Code:	PH-CT402	Course Type :	Core Course-02
Course Title :	Classical Electrodynam	nics-II	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RES	PECTIVE SEMESTER	
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

This course will enable the students to apply tools of electrodynamics and relativity to various physical problems related to moving charges, Plasma formation and its impact on behavior of particle. To make the students learn Radiation by moving charges, Radiation damping etc.

COURSE OUTCOMES:

- 1. Apply Maxwell's equations to various problems and find out their solutions.
- 2. Solve problems involving the propagation and scattering of electromagnetic waves in different medium.
- 3. Grasp the idea of electromagnetic wave propagation through wave guides.
- 4. Obtain the characteristics of electromagnetic radiation by moving charges.
- 5. Understand the rather complex physical phenomena observed in plasma

UNIT-1	Electromagnetic waves: Electromagnetic waves in non-conducting media:
TEACHING	Monochromatic plane waves in vacuum, propagation through linear media,
HOURS(13)	Reflection and transmission at interfaces. Fresnel's laws; Electromagnetic
	waves in conductors: Modified wave equation, monochromatic plane waves in
	conducting media.
	Dispersion: Dispersion in non-conductors, free electrons in conductors and
	plasmas. Guided waves, TE waves in a rectangular wave guide.
UNIT-2	plasmas. Guided waves, TE waves in a rectangular wave guide. Magneto-hydrodynamics and Plasma Physics: Introduction and definitions,
UNIT-2 TEACHING	 plasmas. Guided waves, TE waves in a rectangular wave guide. Magneto-hydrodynamics and Plasma Physics: Introduction and definitions, MHD equations, Magnetic diffusion, viscosity and pressure, Pinch effect,
UNIT-2 TEACHING HOURS(13)	 plasmas. Guided waves, TE waves in a rectangular wave guide. Magneto-hydrodynamics and Plasma Physics: Introduction and definitions, MHD equations, Magnetic diffusion, viscosity and pressure, Pinch effect, instabilities in pinched plasma column, Magneto hydrodynamics wave,
UNIT-2 TEACHING HOURS(13)	 plasmas. Guided waves, TE waves in a rectangular wave guide. Magneto-hydrodynamics and Plasma Physics: Introduction and definitions, MHD equations, Magnetic diffusion, viscosity and pressure, Pinch effect, instabilities in pinched plasma column, Magneto hydrodynamics wave, Plasma oscillations, short wave length limit of plasma oscillations and Debye

TEACHING	Radiation by moving charges: Solution of inhomogeneous wave equation by		
	Fourier analysis; Lienard-Wiechert Potential for a point charge, Total power		
HOURS(13)	radiated by an accelerated charge, Larmour's formula and its relativistic		
	generalization, Angular distribution of radiation emitted by an accelerated		
	charge, Radiation emitted by a charge in arbitrary extremely relativistic		
	motion.		
	Thomson scattering and radiation. Scattering by quasi-free charges, coherent		
	and incoherent scattering. Cherenkov radiation.		
UNIT-4	Radiation damping: Introductory considerations. Radiative reaction force		
TEACHING	from conservation of energy Abraham Lorentz evaluation of the self force		
HOURS(13)	difficulties with Abraham Lorentz model Integro-differential equation of		
	motion including radiation damping. Line Breadth and level shift of an		
	oscillator. Scattering and absorption of radiation by an oscillator		
TEACHING	1. Lecture method		
AND	2. Problem-solving method		
LEARNING	3. Demonstration and Experimental method		
METHODS	4. Seminar/Symposia method		
	5. Extension activity method		
	6. Project and report writing		
CONTINUES	1 Seminar/Symposia		
ASSESSMENT	2. Project and report writing		
METHODS	3. Viva-voce		
	4 Monthly test		
Semester and	NET examination for PG or any other nattern notified by the University		
Examination	at the time of commencement of the respective semester.		
methods for	at the time of commencement of the respective semester.		
nost graduate			
programme			
PERIODICAL	1. ANNUAL		
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any		
SYLLABUS	time during the running semester after giving a notice for a period		
	one months.		
SELECTED	1 Classical Electrodynamics John David Jackson 3 rd Edition Wiley		
READING	1. Chassical Electrodynamics, john David Jackson, 5 Edition, whey, 1998		
	2 Introduction to Electrodynamics David Griffiths 4 th Edition CU		
	Press 2020		
	3 Principles of Flectrodynamics Melvin Schwartz Dover Publications		
	1987		
	4. Classical Electromagnetic Radiation. MA Heald and IB Marion		
	4. Classical Electromagnetic Radiation, MA Heald and JB Marion, Saunders, 1983.		
	 Classical Electromagnetic Radiation, MA Heald and JB Marion, Saunders, 1983. Electrodynamics, Gupta, Kumar, Singh, Pragathiprakashan, 18th 		
	 Classical Electromagnetic Radiation, MA Heald and JB Marion, Saunders, 1983. Electrodynamics, Gupta, Kumar, Singh, Pragathiprakashan,18th edition, 2010. 		
	 Classical Electromagnetic Radiation, MA Heald and JB Marion, Saunders, 1983. Electrodynamics, Gupta, Kumar, Singh, Pragathiprakashan,18th edition, 2010. Modern Problems in Classical Electrodynamics, Charles 		
PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Classical Electrodynamics, John David Jackson, 3rd Edition, Wiley, 1998. Introduction to Electrodynamics, David Griffiths, 4th Edition, CU Press, 2020 Principles of Electrodynamics, Melvin Schwartz, Dover Publications, 1987. 		

SEMESTER IV(Elective-II)			
Course Code:	PH-ET403(A)	Course Type:	Elective Course-02
Course Title :	Physics of Nanomateri	als	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

The aim and objective of the course on **Physics of Nano-materials** is to familiarize the students of M.Sc. to the various aspects related to preparation, characterization and study of different properties of nanomaterials so that they can pursue this emerging research field as career.

COURSE OUTCOMES:

- 1. Apply the knowledge on free electron theory to the band structure of metals, insulators, and semiconductors.
- 2. Acquire knowledge of basic approaches to synthesize the inorganic nanoparticles
- 3. Describe the use of unique optical properties of nanoscale metallic structures for analytical and biological applications
- 4. Understand the physical and chemical properties of carbon nanotubes and nanostructured mesoporous materials.
- 5. Determine the structure-property relationships in nanomaterials as well as the concepts, not applicable at larger length scales.

UNIT-1	Introductory Aspects: Free electron theory and its features, Idea of band
TEACHING	structure - metals, insulators and semiconductors. Density of state in one, two,
HOURS(10)	and three dimensional bands and its variation with energy, Effect of crystal
	size on density of states and band gap. Examples of nanomaterials.
UNIT-2	Synthesis of Nanomaterials: Bottom-up Synthesis -Top-down Approach:
TEACHING	Nanolithography techniques, Arc discharge Method, Laser Ablation Method,
HOURS(12)	Ball Milling, Chemical Vapour Deposition, Molecular Beam Epitaxy, The
	Sol-Gel Method, Co-precipitation Method, and Hydrothermal Synthesis.

UNIT-3	Diffraction techniques : X-ray Diffraction (XRD) – Crystallinity,
TEACHING	particle/crystallite size determination and structural analysis.
HOURS(15)	Microscopic techniques: Scanning Electron Microscopy (SEM)-
	Morphology, grain size and EDX; Transmission Electron Microscopy (TEM)
	– Morphology, particle size and electron diffraction, Selected Area Electron
	Diffraction (SAED).
	Spectroscopic techniques: Fourier Transform Infrared Spectrometer (FTIR),
	Raman Spectroscopy, Photoluminescence Spectrometer, X-Ray Photoelectron
	Spectrometer (XPS), Auger Electron Spectroscopy.
UNIT-4	Quantum Dots: Electron confinement in infinitely deep square well,
TEACHING	confinement in one and two-dimensional wells, idea of quantum well
HOURS(15)	structure, Examples of quantum dots, spectroscopy of quantum dots.
	Carbon based Nanomaterials: Synthesis, structural, and electronics
	properties of fullerenes, carbon nanotubes, and graphene, Functionalisation of
	carbon Nanomaterials, Applications of carbon based Nanomaterials.
TEACHING	1. Lecture method
AND	2. Demonstration and Experimental method
LEARNING	3. Problem-solving method
METHODS	4. Seminar/Symposia method
	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester End	NET examination for PG or any other pattern notified by the University
Examination	at the time of commencement of the respective semester.
methods for	
post graduate	
programs	
PERIODICAL	1. ANNUAL
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any
SYLLABUS	time during the running semester after giving a notice for a period
	one months.
SELECTED	1. Nanotechnology: Principle and Practices, S.K. KulKarni, Capital
KEADING	Publishing Company, 2015.
	2. Nanoscience and Nanotechnology, B.K. Parthasarthy, Isha Books,
	Delhi, 2007.
	3. Introduction to Nanoscience, S.M. Lindsay, Oxford University Press,
	New York, 2010.
	4. Nanotechnology, G Timp, AIP press/Springer, 1999.

SEMESTER IV(Elective-II)			
Course Code:	PH-ET403(B)	Course Type :	Elective Course-02
Course Title :	Experimental Techniqu	ues in Physics	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

The aim of this course is to introduce students with the basic concepts and principles of optical and electron microscopy, X-ray diffraction, thermo gravimetric analysis, surface probe techniques and various spectroscopic techniques need to characterize the materials from bulk to nano scale associated to scientific and engineering aspects.

COURSE OUTCOMES:

- 1. Students will gain the knowledge of fundamental of crystallography.
- 2. Introduce the various characterization techniques for materials.
- 3. The student will learn techniques relevant in emerging areas of industry and research.
- 4. Students will learn to work with their hands and learn skills required in experiments.

UNIT-1	Diffraction Methods: Fundamental crystallography, Generation and
TEACHING	detection of X-rays, Diffraction of X-rays, X-ray diffraction techniques,
HOURS(15)	Electron diffraction.
	Surface Analysis: Atomic force microscopy (AFM), Magnetic force
	microscopy (MFM) scanning tunneling microscopy (STM), X-ray
	photoelectron spectroscopy (XPS), Deep Level Transient Spectroscopy
	(DLTS)
UNIT-2	Optical microscope - Basic principles and components, Different
TEACHING	examination modes (Bright field illumination, Oblique illumination, Dark
HOURS(10)	field illumination, Phase contrast, Polarized light, Hot stage, Interference
	techniques), Stereomicroscopy.
UNIT-3	Electron Microscopy: Interaction of electrons with solids, Scanning electron
TEACHING	microscopy Transmission electron microscopy and specimen preparation
HOURS(12)	techniques, Scanning transmission electron microscopy, Energy dispersive
	spectroscopy, Wavelength dispersive spectroscopy.

UNIT-4	Spectroscopy: Atomic absorption spectroscopy, UV/Visible spectroscopy,
TEACHING	Photoluminescence spectroscopy (PL), Fourier transforms infrared
HOURS(15)	spectroscopy (FTIR), Raman spectroscopy and its application.
	Thermal Analysis: Thermo gravimetric analysis, Differential thermal
	analysis, Differential Scanning calorimetry, Thermo mechanical analysis and
	dilatometry.
TEACHING	1. Lecture method
AND	2. Demonstration and Experimental method
LEARNING	3. Problem-solving method
METHODS	4. Seminar/Symposia method
	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester End	NET examination for PG or any other pattern notified by the University
Examination	at the time of commencement of the respective semester.
methods for	
methods for post graduate	
methods for post graduate programme	
methods for post graduate programme PERIODICAL	1. ANNUAL
methods for post graduate programme PERIODICAL REVISE OF	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months.
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock,
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001.
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic Imaging, Murphy, Douglas B, Wiley-Liss, Inc. USA,
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic Imaging, Murphy, Douglas B, Wiley-Liss, Inc. USA, 2001.
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic Imaging, Murphy, Douglas B, Wiley-Liss, Inc. USA, 2001. Materials Characterization Techniques Sam Zhang by Li, Lin, Ashok
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic Imaging, Murphy, Douglas B, Wiley-Liss, Inc. USA, 2001. Materials Characterization Techniques Sam Zhang by Li, Lin, Ashok Kumar, CRC Press, 2008.
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic Imaging, Murphy, Douglas B, Wiley-Liss, Inc. USA, 2001. Materials Characterization Techniques Sam Zhang by Li, Lin, Ashok Kumar, CRC Press, 2008. Fundamentals of molecular spectroscopy, C. N. Banwell,
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic Imaging, Murphy, Douglas B, Wiley-Liss, Inc. USA, 2001. Materials Characterization Techniques Sam Zhang by Li, Lin, Ashok Kumar, CRC Press, 2008. Fundamentals of molecular spectroscopy, C. N. Banwell, Tata McGraw.
methods for post graduate programme PERIODICAL REVISE OF SYLLABUS SELECTED READING	 ANNUAL HOWEVER THE UNVIERSITY may revise the syllabus at any time during the running semester after giving a notice for a period one months. Elements of X-Ray Diffraction by B.D. Cullity and R.S. Stock, Prentice-Hall, 2001. Fundamentals of Light Microscopy and Electronic Imaging, Murphy, Douglas B, Wiley-Liss, Inc. USA, 2001. Materials Characterization Techniques Sam Zhang by Li, Lin, Ashok Kumar, CRC Press, 2008. Fundamentals of molecular spectroscopy, C. N. Banwell, Tata McGraw. Electron Microscopy and Analysis, P.J. Googhew, Taylor & Francis,

M.Sc. (Physics) SEMESTER IV: (Elective-II)			
Course Code:	PH-ET304(C)	Course Type :	Elective Course-02
Course Title :	Mathematical Physics-	II	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

The aim of the course "Mathematical Physics-II" is familiarize the students with some of the most important mathematical methods not covered in the course "Mathematical Physics", PH-CT104. Students will learn about the representation theory of groups, their application to the various branches of Physics, probability and statistics

COURSE OUTCOMES:

- 1. A very important branch of mathematics called "Group theory" will be introduced. Students will be familiar about the basics of group theory, various groups and their properties.
- 2. Students will learn about the representation theory of groups. They will learn how about various concepts and theorems leading up to the character table for finite groups.
- 3. Students will learn about the continuous groups, Lie groups, their generators and various groups important in the field of Physics.
- 4. After learning the basic theory behind various groups, students will learn about the applications of the theory in the various branches of Physics, such as Solid State Physics, Quantum Physics, Atomic Physics and Particle Physics
- 5. Students will be familiar with the Probability theory, probability distributions, their properties and transformation of random variables.
- 6. Statistics will be introduced to the students where they will learn about how errors propagate. They will learn about fitting curves to data, various distributions and about confidence intervals.

UNIT-1	Group Theory	y: Definiti	ion of	f a group	, Multip	lication ta	able, Conjugate
TEACHING	elements and	classes	of	groups,	directs	product,	Isomorphism,
HOURS(10)	homomorphism	, permutati	ion gro	oup.			

UNIT-2	Representation theory of finite groups: Representation of groups,
TEACHING	equivalent representations, reducibility of a representation, Schur's lemmas
HOURS(15)	and the orthogonality theorem, characters of a representation, Orthogonality
	property of characters, character table, product representations.
	Continuous groups: Continuous groups. Lie groups and their generators
	SO(2) SO(3) SU(2) and SU(3) groups.
UNIT.3	Applications of groups theory: Vanishing integrals symmetry and
TEACHING	degeneracy Symmetry in crystals and molecules Crystallographic point
HOURS(12)	groups translation and space groups molecular point groups irreducible
	representations of point groups, the double group and crystal field splitting
LINIT_4	Probability: Review of probability theory counting permutations and
TFACHINC	combinations Random variables and distributions (discrete & continuous and
HOUDS(15)	their properties) binomial Doisson and Gauss distributions Limits of Doisson
HOUKS(15)	and Dinamial distributions. Transformations of random variables (addition
	and multiplication division). Commo distributions of random variables (addition
	and multiplication/division), Gamma distribution.
	Statistics: Error propagation, fitting curves to data, the chi-square
	distribution, the t-distribution, confidence intervals.
TEACHING	1. Lecture method
AND	2. Demonstration and Experimental method
LEARNING	3. Problem-solving method
METHODS	4. Seminar/Symposia method
	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester End	NET examination for PG or any other pattern notified by the University
Examination	at the time of commencement of the respective semester.
methods for	
post graduate	
programme	
PERIODICAL	1. ANNUAL
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any
SYLLABUS	time during the running semester after giving a notice for a period
	one months.
SELECTED	1. Mathematical methods for physicists, Arfken, Weber and Harris,
READING	Academic press.
	2. Mathematical methods for physics and engineering, Riley, Hobson and
	Bence, Cambridge University Press.
	3. Elements of group theory for physicists, A W Joshi, New Age
	International Publishers.
	4. Group theory with applications in chemical physics, P Jacobs.
	Cambridge University Press.
	5. Molecular quantum mechanics, Atkins and Friedman, Oxford
	University Press

M.Sc. (Physics) SEMESTER IV: Elective-III			
Course Code:	PH-ET404(A)	Course Type :	Elective Course-03
Course Title :	General Theory of Rela	ativity & Cosmology	
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

This course is designed to introduce the theory of general relativity and cosmology, theory of gravitation, cosmological principles, Einstein's field equations and their cosmological solutions in various spaces to solve research problems in cosmology.

COURSE OUTCOMES:

- 1. Understand the concept of transformation of coordinates using tensors.
- 2. Understand the various types tensors useful in solving cosmological problems.
- 3. Understand the Planetary orbits and analogues of Kepler's laws in general relativity.
- 4. Solving Einstein's and its modified field equations.
- 5. Understand the problems in dynamical cosmology.
- 6. Extend these ideas to solve cosmological problems in current research areas.

UNIT-1	General Relativity: Transformation of coordinates. Tensors. Algebra of
TEACHING	Tensors. Symetric and skew symmetric Tensors. Contraction of tensors and
HOURS(13)	quotient law. Reimannian metric, Parallel transport, Christoffel Symbols.
	Covariant derivatives. Intrinsic derivatives and geodesics, Reiemann
	Christoffel curvature tensor and its symmetry properties. Bianchi identities
	and Einstein tensor.
UNIT-2	Review of the special theory of relativity and the Newtonian Theory of
TEACHING	gravitation. Principle of equivalence and general covariance, geodesic
HOURS(13)	principle. Newotonian approximation. Schwarzchild external solution and its
	isotropic form. Planetary orbits and analogues of Kepler's laws in general
	relativity. Adavance or perihelion of a planet. Bending of light rays in
	gravitational field.

UNIT-3	Gravitational redshift of spectral lines. Reader echo delay. Energy-
TEACHING	momentum tensor of a perfect fluid. Schwarzchild internal solution. Boundary
HOURS(13)	conditions Energy momentum tensor of an electromagnetic filed Eistein-
	Maxwell equations Reissner-Nordstrom solution Cosmology Mach's
	principle Finstein modified field equations with cosmological term Static
	Cosmological models of Einstein and De Sitter their derivation properties
	Cosmological models of Emstern and De-Sitter, their derivation, properties
	and comparison with the actual universe.
UNIT-4	Hubble's law. Cosmological principle's weyl's postulate. Derivation of
TEACHING	Robertson-Walker metric. Hubble and deceleration parameters. Redshift.
HOURS(13)	Redsshift versus distance relation. Angular size versus redshift relation and
	source counts in Robertson-Walker space-time. Friedmann models.
	Fundamental equations of dynamical cosmology. Critical density. Closed and
	open Universes. Age of the universe. Matter dominated era of the universe.
	Einstein-de-Sitter model. Particle and even horizons. Eddington- Lamaitre
	models with Λ -trem. Perfect cosmological principle. Steady state cosmology.
TEACHING	1. Lecture method
AND	2. Demonstration and Experimental method
LEARNING	3. Problem-solving method
METHODS	4. Seminar/Symposia method
	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester End	NET examination for PG or any other pattern notified by the University
Examination	at the time of commencement of the respective semester.
methods for	
post graduate	
programme	
PERIODICAL	1. ANNUAL
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any
SYLLABUS	time during the running semester after giving a notice for a period
	one months.
SELECTED	1. General Relativity and Cosmilogy, J.V. Narlikar, The Machmillann
READING	Company of India Ltd. 1978.
	2. A first course in genral relativity, B.F. Shutz, Combridge University
	Press, 1990.
	3. Gravity, Black Holes and the Very Early universe: An Introduction to
	General Relativity and Cosmology, Tai L. Chow, Springer, 2008.
	4. Introduction to Cosmology, J. V. Narlikar, Cambridge University
	Press, 2002.
	5. Cosmology, Steven Weinberg, Oxford University, 2008.

M.Sc. (Physics) SEMESTER IV: Elective-III			
Course Code:	PH-ET404(B)	Course Type :	Elective Course-03
Course Title :	Nuclear Accelerator and Radiation Physics		
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	52 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

This course is aimed to introduce the student to practical aspects of nuclear radiation, the role of fundamental processes involved in the interaction of photon, charged particles and neutrons with matter, the principles underlying the operation of nuclear detection instruments.

COURSE OUTCOMES:

- 1. Learn about the different type of accelerators.
- 2. Get knowledge about principle of operation of various radiation detectors.
- 3. Understand various modes of interaction of electromagnetic radiations, neutron and charged particles with matter
- 4. Distinguish various types of radiations based on their interaction with matter.

UNIT-1	Sources of Radiation: Cosmic rays, radioactive sources, accelerators (Brief
TEACHING	study of principle of operation & characteristics of radiations of Cockroft
HOURS(13)	Walton, Van de Graff, cyclotron, betatron, electron synchrotron, linear
	accelerator) Synchrotron radiation: Polarization, coherence and emittance.
	Neutron Source: Reactors, Neutrons from charged particle and photon induced
	reactions.
	Radiation Protection: Units and special parameters, background levels,
	radiation carcinogesis

UNIT-2	Interaction of Charged Particle with Matter: Definition of range, types of
TEACHING	charged particle interaction, energy transfer in elastic collisions, Bethe formula,
HOURS(13)	scattering of heavy and light charged particles.
	Interaction of electromagnetic radiation with matter: Attenuation
	coefficients, classical scattering from single electrons, coherent scattering,
	Klein–Nishina cross section for Compton scattering (No derivation). Compton
	scattering from atomic electrons: Effect of electron binding electron recoil
	energy electron momentum distributions from Compton profiles. Photoelectric
	absorption characteristic X-rays Auger electrons pair production
UNIT.3	Interaction with Neutrons: Neutron interactions Neutron fields in non-
TEACHING	multiplying media. Definition of flux current density collision dynamics
HOURS(13)	distribution of energy and angle of scatter. Mean scatter angle and energy loss
$\mathbf{HOOKS}(13)$	in single collision, extension to multiple collision, slowing down in hydrogen
	neutron diffusion, moderation and diffusion
LINUT A	Nuclear Detectors: Methods for detection of free change corriers. Ionization
	chamber Proportional counter Geiger Muller counter Semiconductor
HOUDS(12)	detectors Scintillation detector Charankov detector Wilson aloud ahamber
HOUKS(13)	Pubble shamber Spork shamber Nuclear emulsion techniques. Solid State
	Bubble chamber, Spark chamber, Nuclear emuision techniques, Sond State
TEACHINC	1 Leasture method
	 Lecture method Demonstration and Experimental method
LEARNING	2. Demonstration and Experimental method 3 Problem-solving method
METHODS	4. Seminar/Symposia method
	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester End	NET examination for PG or any other pattern notified by the University at the
Examination	time of commencement of the respective semester.
methods for	
post graduate	
programme	1 ANINITIAT
PERIODICAL DEVISE OF	1. ANNUAL 2. HOWEVED THE UNVIEDSITY may ravise the syllabus at any time
SYLLABUS	during the running semester after giving a notice for a period one months.
SELECTED	1 A Primer in Applied Padiation Physics, E.A. Smith World Scientific
READING	 A Finner in Applied Radiation Physics, P.A. Siniti, World Scientific. Nuclear Radiation Physics, R.F. Lann and H.L. Andrews, Prentice-Hall New
	Jersey, 1972.
	3. Radiation Detection and Measurements, G. F. Knoll, Wiley & Sons, New
	Delhi.
	4. Introductory Nuclear Physics: K. S. Krane, Wiley & Sons, New Delhi.
	5. An Introduction to X-ray Spectrometry: Ron Jenkin, Wiley.
	6. Techniques for Nuclear and Particle Physics Experiments: W. R. Leo, Narosa
	Publishing House, New Delhi.
	7. Introduction to experimental Nuclear Physics: R.M. Singru, Wiley & Sons,
	New Delhi

M.Sc. (Physics) SEMESTER IV: (Elective-III)			
Course Code:	PH-ET404(C)	Course Type:	Elective Course-03
Course Title :	Science of Renewable source of Energy		
Credit:	4	Hours:	4 Hours/Week
		Total Teaching	45L+15T = 60 Hours
		Hours:	
Max. Marks:	100	Minimum Pass	36
		Marks:	
Theory Examination:	70	Minimum Pass	25
		Marks:	
Internal Assessment:	30	Minimum Pass	11
		Marks:	
Attendance Eligibility	75 PERCENT IN RESPECTIVE SEMESTER		
Examination	ESE	Mid. TEST	
Duration	03 Hrs	1 Hr	

The aim and objective of the course on Science of renewable Energy Sources is to expose the M.Sc. students to the basics of the alternative energy sources like solar energy, hydrogen energy, etc.

COURSE OUTCOMES:

- 1. Understand the energy demand of world & distinguish between traditional and alternative form of energy
- 2. Describe the concept of solar energy radiation and thermal applications.
- 3. Analyze making of solar cell and its types.
- 4. Identify hydrogen as energy source, its storage and transportation methods.
- 5. Summarize the fundamentals of other renewable energy resources like wind, bio, geothermal, ocean etc.

UNIT-1	Introduction: Production and reserves of energy sources in the world and in
TEACHING	India, need for alternatives, renewable energy sources.
HOURS(10)	
UNIT-2	Solar Energy: Thermal applications, solar radiation outside the earth's
TEACHING	atmosphere and at the earth's surface, Principal of working of solar cell,
HOURS(13)	Performance characteristics of solar cell. Types of solar cell, crystalline
	silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary
	ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar
	cell, PV solar cell, module array, and panel, Applications.

UNIT-3	Hydrogen Energy: Environmental considerations, solar hydrogen through
TEACHING	photo electrolysis and photocatalytic process, physics of material
HOURS(12)	characteristics for production of solar hydrogen. Storage processes, solid state
	hydrogen storage materials, structural and electronic properties of storage
	materials new storage modes safety factors use of hydrogen as fuel: use in
	vehicles and electric generation fuel cells
UNIT-4	Other Renewable Energy Resources: Wind Energy Bio Energy
TFACHINC	Geothermal energy ocean thermal energy wave energy Tidal energy waste
HOUDS(10)	to operate heat to operate Euclide tupos and applications
	to energy, near to energy, ruler cens. types and applications.
	1. Lecture method
AND	2. Demonstration and Experimental method
LEAKNING	5. Problem-solving method
METHODS	4. Seminar/Symposia method
	5. Extension activity method
	6. Project and report writing
CONTINUES	1. Seminar/Symposia
ASSESSMENT	2. Project and report writing
METHODS	3. Viva-voce
	4. Monthly test
Semester End	NET examination for PG or any other pattern notified by the University
Examination	at the time of commencement of the respective semester.
methods for	
post graduate	
programme	
PERIODICAL	1. ANNUAL
REVISE OF	2. HOWEVER THE UNVIERSITY may revise the syllabus at any
SYLLABUS	time during the running semester after giving a notice for a period
	one months.
SELECTED	1 Solar Energy: S.P. Sukhatme, Tata McGraw-Hill, New Delhi, 2008
READING	2 Solar Cell Devices: Fonash Academic Press New York 2010
	3 Fundamentals of Solar Cells Photovoltaic Solar Energy: Fahren bruch
	and Rube Springer Berlin 1982
	A Photo electrochemical Solar Cells: Chandra New Age New Delhi
	5 Rai G.D. "Non conventional Energy Sources" Khanna Publishers
	2006
	6 A Duffie and WA Beckmann Solar Engineering of Thermal
	Drocesses John Wiley (1080)
	7 E Knoith and LE Knoider Dringinlag of Solar Engineering McCrow
	7. F. Kleith and J.F. Kleider, Finiciples of Solar Engineering, McGraw-
	IIII, 1978. 9 Handhaalt of Engineering Albert Theorem D. D. 1971.
	8. Handbook of Energy Engineering, Albert Thumann, D. Paul Mehta,
	Fairmont Press,2008.